Efficiently Simulating Higher-Order Arithmetic by a First-Order Theory Modulo
暂无分享,去创建一个
[1] Jan Kraj mIček. On the number of steps in proofs , 1989 .
[2] Claude Kirchner,et al. Theorem Proving Modulo , 2003, Journal of Automated Reasoning.
[3] Jean H. Gallier,et al. Logic for Computer Science: Foundations of Automatic Theorem Proving , 1985 .
[4] Alessio Guglielmi,et al. On the proof complexity of deep inference , 2009, TOCL.
[5] Barkley Rosser. Gödel Kurt. Über die Länge von Beweisen. Ergebnisse eirtes mathematischen Kolloquiums, Heft 7, pp. 23–24. , 1936, Journal of Symbolic Logic.
[6] Maribel Fernández,et al. Curry-Style Types for Nominal Terms , 2006, TYPES.
[7] Kai Brünnler. Deep inference and symmetry in classical proofs , 2003 .
[8] Clément Houtmann. Axiom Directed Focusing , 2008, TYPES.
[9] Dirk van Dalen,et al. Logic and structure , 1980 .
[10] Gilles Dowek,et al. Truth Values Algebras and Proof Normalization , 2006, TYPES.
[11] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus , 1983 .
[12] JEAN-MARC ANDREOLI,et al. Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..
[13] Tobias Nipkow,et al. Term rewriting and all that , 1998 .
[14] Ozan Kahramanogullari. Reducing Nondeterminism in the Calculus of Structures , 2006, LPAR.
[15] Samuel R. Buss,et al. On Gödel's theorems on lengths of proofs I: Number of lines and speedup for arithmetics , 1994, Journal of Symbolic Logic.
[16] Stephen A. Cook,et al. The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.
[17] Rohit Parikh. Some results on the length of proofs , 1973 .
[18] S. C. Kleene,et al. Finite Axiomatizability of Theories in the Predicate Calculus Using Additional Predicate Symbols , 1952 .
[19] Denis Cousineau,et al. Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo , 2007, TLCA.
[20] Guillaume Burel,et al. A First-Order Representation of Pure Type Systems Using Superdeduction , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.
[21] Hugo Herbelin,et al. The Coq proof assistant : reference manual, version 6.1 , 1997 .
[22] H. Poincaré. La science et l'hypothèse , 1968 .
[23] Guillaume Burel. Embedding deduction modulo into a prover , 2010, CSL 2010.
[24] Benedikt Löwe,et al. New Computational Paradigms , 2005 .
[25] Lisa Allali. Algorithmic Equality in Heyting Arithmetic Modulo , 2007, TYPES.
[26] Claude Kirchner,et al. HOL-λσ: an intentional first-order expression of higher-order logic , 2001, Mathematical Structures in Computer Science.
[27] Lawrence Charles Paulson,et al. Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .
[28] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[29] George C. Necula,et al. Proof-carrying code , 1997, POPL '97.
[30] Guillaume Burel,et al. Unbounded Proof-Length Speed-Up in Deduction Modulo , 2007, CSL.
[31] Gilles Dowek,et al. Arithmetic as a Theory Modulo , 2005, RTA.
[32] Gilles Dowek,et al. Proof normalization modulo , 2003, Journal of Symbolic Logic.
[33] Claude Kirchner,et al. Principles of Superdeduction , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).
[34] Benjamin Wack. Typage et déduction dans le calcul de réécriture. (Type systems and deduction in the rewriting calculus) , 2005 .
[35] Florent Kirchner. A Finite First-Order Theory of Classes , 2006, TYPES.
[36] Samuel R. Buss. Polynomial Size Proofs of the Propositional Pigeonhole Principle , 1987, J. Symb. Log..