Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design.

The performance of highly nonlinear organic electro-optic (EO) materials incorporated into nanoscale slots is examined. It is shown that EO coefficients as large as 190 pm/V can be obtained in 150 nm wide plasmonic slot waveguides but that the coefficients decrease for narrower slots. Possible mechanism that lead to such a decrease are discussed. Monte-Carlo computer simulations are performed, confirming that chromophore-surface interactions are one important factor influencing the EO coefficient in narrow plasmonic slots. These highly nonlinear materials are of particular interest for applications in optical modulators. However, in modulators the key parameters are the voltage-length product UπL and the insertion loss rather than the linear EO coefficients. We show record-low voltage-length products of 70 Vµm and 50 Vµm for slot widths in the order of 50 nm for the materials JRD1 and DLD164, respectively. This is because the nonlinear interaction is enhanced in narrow slot and thereby compensates for the reduced EO coefficient. Likewise, it is found that lowest insertion losses are observed for slot widths in the range 60 to 100 nm.

[1]  D Hillerkuss,et al.  Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. , 2017, Optics express.

[2]  Bruce H. Robinson,et al.  Toward optimal EO response from ONLO chromophores: a statistical mechanics study of optimizing shape , 2016 .

[3]  A. F. Tillack,et al.  Systematic Generation of Anisotropic Coarse-Grained Lennard-Jones Potentials and Their Application to Ordered Soft Matter. , 2016, Journal of chemical theory and computation.

[4]  Ray T. Chen,et al.  High Performance Optical Modulator Based on Electro-Optic Polymer Filled Silicon Slot Photonic Crystal Waveguide , 2016, Journal of Lightwave Technology.

[5]  David Hillerkuss,et al.  Plasmonic Organic Hybrid Modulators—Scaling Highest Speed Photonics to the Microscale , 2016, Proceedings of the IEEE.

[6]  C Koos,et al.  Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology. , 2016, Optics express.

[7]  Lukas Czornomaz,et al.  A Hybrid Barium Titanate–Silicon Photonics Platform for Ultraefficient Electro-Optic Tuning , 2016, Journal of Lightwave Technology.

[8]  Ruimin Xu,et al.  Structure–function relationship exploration for enhanced thermal stability and electro-optic activity in monolithic organic NLO chromophores , 2016 .

[9]  Ray T. Chen,et al.  Design of a plasmonic-organic hybrid slot waveguide integrated with a bowtie-antenna for terahertz wave detection , 2016, SPIE OPTO.

[10]  Raluca Dinu,et al.  Polymer enabled 100 Gbaud connectivity for datacom applications , 2016 .

[11]  Jingdong Luo,et al.  Analysis of efficiently poled electro-optic polymer/Tio2 vertical slot waveguide modulators , 2016 .

[12]  D. Hillerkuss,et al.  108 Gbit/s Plasmonic Mach–Zehnder Modulator with > 70-GHz Electrical Bandwidth , 2016, Journal of Lightwave Technology.

[13]  Mattias Beck,et al.  Subcycle measurement of intensity correlations in the terahertz frequency range , 2015, 1512.02198.

[14]  C. Koos,et al.  Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) Integration , 2015, Journal of Lightwave Technology.

[15]  D Hillerkuss,et al.  High speed plasmonic modulator array enabling dense optical interconnect solutions. , 2015, Optics express.

[16]  David Hillerkuss,et al.  Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna , 2015, Nano letters.

[17]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[18]  A. Jen,et al.  Poling efficiency enhancement of tethered binary nonlinear optical chromophores for achieving an ultrahigh n3r33 figure-of-merit of 2601 pm V−1 , 2015 .

[19]  C. Koos,et al.  Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40 Gbit/s , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[20]  Raju Sinha,et al.  Tunable Room Temperature THz Sources Based on Nonlinear Mixing in a Hybrid Optical and THz Micro-Ring Resonator , 2015, Scientific Reports.

[21]  Ray T. Chen,et al.  Broadband energy-efficient optical modulation by hybrid integration of silicon nanophotonics and organic electro-optic polymer , 2015, Photonics West - Optoelectronic Materials and Devices.

[22]  Wolfgang Freude,et al.  Femtojoule electro-optic modulation using a silicon–organic hybrid device , 2015, Light: Science & Applications.

[23]  A. Jen,et al.  Electro-optic polymer/TiO2 vertical slot waveguide modulators , 2014, 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[24]  D Zhang,et al.  Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO₂ multilayer slot waveguide modulators. , 2014, Optics express.

[25]  Wolfgang Freude,et al.  High-Speed, Low Drive-Voltage Silicon-Organic Hybrid Modulator Based on a Binary-Chromophore Electro-Optic Material , 2014, Journal of Lightwave Technology.

[26]  Ruimin Xu,et al.  Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical devices during electric field poling , 2014 .

[27]  W. Freude,et al.  Demonstration of difference frequency generation in a silicon slot waveguide , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[28]  Ray T. Chen,et al.  Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator , 2014, Journal of Lightwave Technology.

[29]  Raluca Dinu,et al.  High-speed plasmonic phase modulators , 2014, Nature Photonics.

[30]  Bruce H. Robinson,et al.  Matrix-Assisted Poling of Monolithic Bridge-Disubstituted Organic NLO Chromophores , 2014 .

[31]  Dennis W. Prather,et al.  All-Polymer modulator for high frequency low drive voltage applications , 2014, Photonics West - Optoelectronic Materials and Devices.

[32]  Nasser Peyghambarian,et al.  A Silicon-Polymer Hybrid Modulator—Design, Simulation and Proof of Principle , 2013, Journal of Lightwave Technology.

[33]  Ray T. Chen,et al.  Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide. , 2013, Optics letters.

[34]  Raluca Dinu,et al.  Silicon-Organic Hybrid Electro-Optical Devices , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  Ray T. Chen,et al.  Polymer-Based Hybrid-Integrated Photonic Devices for Silicon On-Chip Modulation and Board-Level Optical Interconnects , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  J. Leuthold,et al.  Low Power Mach–Zehnder Modulator in Silicon-Organic Hybrid Technology , 2013, IEEE Photonics Technology Letters.

[37]  Dingshan Gao,et al.  Highly efficient phase-matched second harmonic generation using an asymmetric plasmonic slot waveguide configuration in hybrid polymer-silicon photonics. , 2013, Optics express.

[38]  Yasuyuki Okamura,et al.  Electrooptic Millimeter-Wave–Lightwave Signal Converters Suspended to Gap-Embedded Patch Antennas on Low-$k$ Dielectric Materials , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  C. Koos,et al.  Silicon-Organic Hybrid MZI Modulator Generating OOK, BPSK and 8-ASK Signals for Up to 84 Gbit/s , 2013, IEEE Photonics Journal.

[40]  L. Dalton,et al.  Nanoscale phase analysis of molecular cooperativity and thermal transitions in dendritic nonlinear optical glasses. , 2012, The journal of physical chemistry. B.

[41]  Peter Paul Klein,et al.  On the Ellipsoid and Plane Intersection Equation , 2012 .

[42]  C Koos,et al.  Second-order nonlinear silicon-organic hybrid waveguides. , 2012, Optics express.

[43]  Bruce H. Robinson,et al.  Nano‐Engineering Lattice Dimensionality for a Soft Matter Organic Functional Material , 2012, Advanced materials.

[44]  D Hillerkuss,et al.  42.7 Gbit/s electro-optic modulator in silicon technology. , 2011, Optics express.

[45]  Xiaolong Wang,et al.  Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides. , 2011, Optics letters.

[46]  Bruce H. Robinson,et al.  Systematic Nanoengineering of Soft Matter Organic Electro-optic Materials† , 2011 .

[47]  Robin Barnes,et al.  Reduced dimensionality in organic electro-optic materials: theory and defined order. , 2010, The journal of physical chemistry. B.

[48]  Raluca Dinu,et al.  EO polymer modulators reliability study , 2010, OPTO.

[49]  Larry R Dalton,et al.  Electric field poled organic electro-optic materials: state of the art and future prospects. , 2010, Chemical reviews.

[50]  Jingdong Luo,et al.  Supramolecular Self‐Assembled Dendritic Nonlinear Optical Chromophores: Fine‐Tuning of Arene–Perfluoroarene Interactions for Ultralarge Electro‐Optic Activity and Enhanced Thermal Stability , 2009 .

[51]  Richard A. Vaia,et al.  Accurate Simulation of Surfaces and Interfaces of Face-Centered Cubic Metals Using 12−6 and 9−6 Lennard-Jones Potentials , 2008 .

[52]  Larry R. Dalton,et al.  Binary Chromophore Systems in Nonlinear Optical Dendrimers and Polymers for Large Electrooptic Activities , 2008 .

[53]  Jingdong Luo,et al.  Wideband 15THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths , 2008 .

[54]  Wolfgang Freude,et al.  High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. , 2008, Optics express.

[55]  Larry R. Dalton,et al.  Guest-Host Cooperativity in Organic Materials Greatly Enhances the Nonlinear Optical Response , 2008 .

[56]  A. Jen,et al.  Mesoscale dynamics and cooperativity of networking dendronized nonlinear optical molecular glasses. , 2008, Nano letters.

[57]  R Lawson,et al.  Optical modulation and detection in slotted Silicon waveguides. , 2005, Optics express.

[58]  Michael B. A. Oldstone,et al.  Broadband Modulation of Light by Using an Electro-Optic Polymer , 2002 .

[59]  G. O. Carlisle,et al.  Optical properties of disperse-red-1-doped nematic liquid crystal , 2001 .

[60]  Francois Kajzar,et al.  Comparative study of nonlinear-optical polymers for guided-wave second-harmonic generation at telecommunication wavelengths , 2000 .

[61]  Bruce H. Robinson,et al.  Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials† , 2000 .

[62]  Zhang,et al.  Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape , 2000, Science.

[63]  Antao Chen,et al.  From molecules to opto-chips: organic electro-optic materials , 1999 .

[64]  R. Wortmann,et al.  Organic Materials for Second-Order Non-Linear Optics , 1999 .

[65]  H. Fetterman,et al.  Demonstration of 110 GHz electro-optic polymer modulators , 1997 .

[66]  S. J. B. Yoo,et al.  Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding , 1996 .

[67]  X. Zhang,et al.  Ultrafast electro-optic field sensors , 1996 .

[68]  Donald M. Burland,et al.  SECOND-ORDER NONLINEARITY IN POLED-POLYMER SYSTEMS , 1994 .

[69]  Mark A. Ratner,et al.  Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects , 1994 .

[70]  J.H. Schaffner,et al.  60 GHz and 94 GHz antenna-coupled LiNbO/sub 3/ electrooptic modulators , 1993, IEEE Photonics Technology Letters.

[71]  J.H. Schaffner,et al.  Wave-coupled LiNbO/sub 3/ electrooptic modulator for microwave and millimeter-wave modulation , 1991, IEEE Photonics Technology Letters.

[72]  R. B. Comizzoli,et al.  Electro‐optic phase modulation and optical second‐harmonic generation in corona‐poled polymer films , 1988 .

[73]  T. Gaylord,et al.  Lithium niobate: Summary of physical properties and crystal structure , 1985 .

[74]  J. Oudar,et al.  Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment , 1977 .