SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS

We show that energy deposited into an expanding supernova remnant by a highly magnetic (B ~ 5 × 1014 G) neutron star spinning at an initial period of Pi ≈ 2-20 ms can substantially brighten the light curve. For magnetars with parameters in this range, the rotational energy is released on a timescale of days to weeks, which is comparable to the effective diffusion time through the supernova remnant. The late time energy injection can then be radiated without suffering overwhelming adiabatic expansion losses. The magnetar input also produces a central bubble that sweeps ejecta into an internal dense shell, resulting in a prolonged period of nearly constant photospheric velocity in the observed spectra. We derive analytic expressions for the light curve rise time and peak luminosity as a function of B and Pi , and the properties of the supernova ejecta that allow for direct inferences about the underlying magnetar in bright supernovae. We perform numerical radiation hydrodynamic calculations of a few specific instances and compare the resulting light curves to observed events. Magnetar birth is likely to impact more than a few percent of all core-collapse supernovae, and may naturally explain some of the brightest events ever seen (e.g., SN 2005ap and SN 2008es) at L 1044 ergs s–1.

[1]  E. Gotthelf,et al.  TWO MAGNETAR CANDIDATES IN HESS SUPERNOVA REMNANTS , 2009, 0912.4985.

[2]  B. Metzger,et al.  Magnetized relativistic jets and long-duration GRBs from magnetar spin-down during core-collapse supernovae , 2009, 0901.3801.

[3]  R. Chevalier Was SN 1054 A Type II Supernova , 1977 .

[4]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[5]  K. Hurley,et al.  An X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR1806 − 20 , 1998, Nature.

[6]  S. B. Cenko,et al.  DISCOVERY OF THE ULTRA-BRIGHT TYPE II-L SUPERNOVA 2008es , 2008, 0808.2812.

[7]  Philip Chang,et al.  Magnetar Spin-Down, Hyperenergetic Supernovae, and Gamma-Ray Bursts , 2004, astro-ph/0401555.

[8]  J. Pel,et al.  The High Road to Astronomical Photometric Precision: Differential Photometry , 2011 .

[9]  R. Chevalier,et al.  Pulsar Nebulae in Supernovae , 1992 .

[10]  P. Mazzali,et al.  The Unique Type Ib Supernova 2005bf at Nebular Phases: A Possible Birth Event of a Strongly Magnetized Neutron Star , 2007, 0705.2713.

[11]  J. Blondin,et al.  Pulsar Wind Nebulae in Evolved Supernova Remnants , 2001, astro-ph/0107076.

[12]  Kevin C. Hurley,et al.  Soft gamma repeaters , 2011 .

[13]  C. Thompson,et al.  Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates , 2004 .

[14]  J. Arons Magnetars in the Metagalaxy: An Origin for Ultra-High-Energy Cosmic Rays in the Nearby Universe , 2002, astro-ph/0208444.

[15]  Lifan Wang,et al.  Asymmetric Supernovae, Pulsars, Magnetars, and Gamma-Ray Bursts , 2000 .

[16]  C. Kouveliotou,et al.  A Near-Infrared Survey of the N49 Region around the Soft Gamma Repeater SGR 0526–66 , 2004, astro-ph/0405299.

[17]  S. McMillan,et al.  A Neutron Star with a Massive Progenitor in Westerlund 1 , 2005, astro-ph/0509408.

[18]  Adam A. Miller,et al.  THE EXCEPTIONALLY LUMINOUS TYPE II-LINEAR SUPERNOVA 2008es , 2008, 0808.2193.

[19]  M. Sullivan,et al.  Supernova 2007bi as a pair-instability explosion , 2009, Nature.

[20]  C. Kouveliotou,et al.  THE PROGENITOR MASS OF THE MAGNETAR SGR1900+14 , 2009, 0910.4859.

[21]  D. Bersier,et al.  Two type Ic supernovae in low-metallicity, dwarf galaxies: Diversity of explosions , 2009, 0910.2248.

[22]  Robert M. Quimby,et al.  SN 2005ap: A Most Brilliant Explosion , 2007, 0709.0302.

[23]  R. Thomas,et al.  A Comparative Study of the Absolute Magnitude Distributions of Supernovae , 2001, astro-ph/0112051.

[24]  M. Haverkorn,et al.  TO APPEAR IN The Astrophysical Journal (Letters) Preprint typeset using LATEX style emulateapj v. 6/22/04 A STELLAR WIND BUBBLE COINCIDENT WITH THE ANOMALOUS X-RAY PULSAR 1E 1048.1–5937: ARE MAGNETARS FORMED FROM MASSIVE PROGENITORS? , 2005 .

[25]  C. Thompson,et al.  Neutron star dynamos and the origins of pulsar magnetism , 1993 .

[26]  Utrecht,et al.  Supernova remnant energetics and magnetars: no evidence in favour of millisecond proto-neutron stars , 2006, astro-ph/0604187.

[27]  A. MacFadyen,et al.  Magnetar-Driven Magnetic Tower as a Model for Gamma-Ray Bursts and Asymmetric Supernovae , 2006, astro-ph/0609047.

[28]  W. Arnett On the theory of type I supernovae. , 1979 .

[29]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[30]  P. Bodenheimer,et al.  Do Pulsars Make Supernovae? 11. Calculations of Light Curves for Type 11 Events , 1974 .