A Godunov-type tensor artificial viscosity for staggered Lagrangian hydrodynamics

Abstract This paper describes a tensor artificial viscosity for staggered Lagrangian hydrodynamics. Specifically, two viscous tensors are constructed using a discrete velocity gradient method. Under the condition of a piecewise constant distribution of velocity in each subcell, the Generalized Riemann Invariant relation, in the spirit of the Godunov methods, is applied to determine the coefficients of the viscous tensors. The artificial viscosity is found to be dissipative. Besides, the cylindrical symmetry of the developed artificial viscosity is demonstrated in an equi-angular polar grid. Typical numerical cases with strong shocks show that the tensor artificial viscosity is robust and performs well in different grid types.

[1]  Pavel Váchal,et al.  A symmetry preserving dissipative artificial viscosity in an r-z staggered Lagrangian discretization , 2014, J. Comput. Phys..

[2]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[3]  M. Shashkov,et al.  Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures , 1998 .

[4]  William J. Rider,et al.  Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows , 2016, J. Comput. Phys..

[5]  A. Burbeau-Augoula,et al.  A Node-Centered Artificial Viscosity Method for Two-Dimensional Lagrangian Hydrodynamics Calculations on a Staggered Grid , 2010 .

[6]  Konstantin Lipnikov,et al.  A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes , 2010, J. Comput. Phys..

[7]  Rao V. Garimella,et al.  A comparative study of interface reconstruction methods for multi-material ALE simulations , 2010 .

[8]  Nathaniel R. Morgan,et al.  A Lagrangian staggered grid Godunov-like approach for hydrodynamics , 2014, J. Comput. Phys..

[9]  Xiaodong Liu,et al.  Reducing spurious mesh motion in Lagrangian finite volume and discontinuous Galerkin hydrodynamic methods , 2018, J. Comput. Phys..

[10]  Chi-Wang Shu,et al.  A Conservative Lagrangian Scheme for Solving Compressible Fluid Flows with Multiple Internal Energy Equations , 2012 .

[11]  Raphaël Loubère,et al.  Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme , 2011 .

[12]  Tzanio V. Kolev,et al.  High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..

[13]  Joseph Falcovitz,et al.  Slope limiting for vectors: A novel vector limiting algorithm , 2011 .

[14]  Shudao Zhang,et al.  A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions , 2011, J. Comput. Phys..

[15]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[16]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[17]  Raphaël Loubère,et al.  3D staggered Lagrangian hydrodynamics scheme with cell‐centered Riemann solver‐based artificial viscosity , 2013 .

[18]  Pierre-Henri Maire,et al.  A 3D GCL compatible cell-centered Lagrangian scheme for solving gas dynamics equations , 2016, J. Comput. Phys..

[19]  John K. Dukowicz,et al.  Vorticity errors in multidimensional Lagrangian codes , 1992 .

[20]  G. Luttwak,et al.  Staggered Mesh Godunov (SMG) Schemes for Lagrangian Hydrodynamics , 2005 .

[21]  Mikhail Shashkov,et al.  Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations , 1998 .

[22]  John K. Dukowicz,et al.  A general, non-iterative Riemann solver for Godunov's method☆ , 1985 .

[23]  Tzanio V. Kolev,et al.  A tensor artificial viscosity using a finite element approach , 2009, J. Comput. Phys..

[24]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[25]  Pierre-Henri Maire,et al.  A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids , 2011 .

[26]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[27]  Chi-Wang Shu,et al.  A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry , 2010, J. Comput. Phys..

[28]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[29]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[30]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry , 2009, J. Comput. Phys..

[31]  Mikhail Shashkov,et al.  A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .

[32]  Nathaniel R. Morgan,et al.  A cell-centered Lagrangian Godunov-like method for solid dynamics , 2013 .