(LA,Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards

[1]  D. Stockli,et al.  Characterisation of Apatites as Potential Uranium Reference Materials for Fission‐track Dating by LA‐ICP‐MS , 2015 .

[2]  B. Kamber,et al.  High-resolution LA-ICP-MS trace element mapping of igneous minerals: In search of magma histories , 2015 .

[3]  J. Webster,et al.  Magmatic Apatite: A Powerful, Yet Deceptive, Mineral , 2015 .

[4]  John M. Hughes,et al.  Structurally Robust, Chemically Diverse: Apatite and Apatite Supergroup Minerals , 2015 .

[5]  B. Kamber,et al.  A combined Y/Ho, high field strength element (HFSE) and Nd isotope perspective on basalt weathering, Deccan Traps, India , 2015 .

[6]  D. Pyle,et al.  New Constraints On Electron-Beam Induced Halogen Migration In Apatite , 2015 .

[7]  Chao Huang,et al.  Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology , 2014 .

[8]  M. Andreae,et al.  Non‐Matrix‐Matched Calibration for the Multi‐Element Analysis of Geological and Environmental Samples Using 200 nm Femtosecond LA‐ICP‐MS: A Comparison with Nanosecond Lasers , 2014 .

[9]  D. Garbe‐Schönberg,et al.  Nano-particulate pressed powder tablets for LA-ICP-MS , 2014 .

[10]  F. Stuart,et al.  The thermal history of the western Irish onshore , 2014, Journal of the Geological Society.

[11]  B. Kamber,et al.  Apatite Chlorine Concentration Measurements by LA‐ICP‐MS , 2014 .

[12]  U. Schaltegger,et al.  High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite , 2014 .

[13]  B. Kamber,et al.  U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb , 2014 .

[14]  G. J. Taylor,et al.  Magmatic water in the martian meteorite Nakhla , 2012 .

[15]  M. Andreae,et al.  Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS , 2012 .

[16]  D. Harlov,et al.  Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens , 2012 .

[17]  Q. Yin,et al.  In-situ SIMS U–Pb dating of phanerozoic apatite with low U and high common Pb , 2012 .

[18]  G. Gehrels,et al.  Routine low‐damage apatite U‐Pb dating using laser ablation–multicollector–ICPMS , 2012 .

[19]  M. Kendrick High precision Cl, Br and I determinations in mineral standards using the noble gas method , 2012 .

[20]  G. Eby,et al.  The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: An integrated analytical approach , 2012 .

[21]  Zhou Liqin,et al.  Methodology of SHRIMP In-Situ O Isotopes Analysis on Conodont , 2012 .

[22]  J. Hellstrom,et al.  Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .

[23]  C. Hawkesworth,et al.  Characterization of magma from inclusions in zircon: Apatite and biotite work well, feldspar less so , 2011 .

[24]  B. Kamber,et al.  An estimate of 1.9 Ga mantle depletion using the high-field-strength elements and Nd–Pb isotopes of ocean floor basalts, Flin Flon Belt, Canada , 2011 .

[25]  S. Samson,et al.  A tephrochronologic method based on apatite trace-element chemistry , 2011, Quaternary Research.

[26]  H. Longerich,et al.  Sm-Nd isotope systematics by laser ablation-multicollector-inductively coupled plasma mass spectrometry: Methods and potential natural and synthetic reference materials , 2011 .

[27]  M. Tubrett,et al.  U-Pb and Th-Pb dating of apatite by LA-ICPMS , 2011 .

[28]  T. Ulrich,et al.  Long‐Term Observations of Isotope Ratio Accuracy and Reproducibility Using Quadrupole ICP‐MS , 2010 .

[29]  B. Kamber,et al.  The behaviour of tungsten during mantle melting revisited with implications for planetary differentiation time scales , 2010 .

[30]  W. Griffin,et al.  Apatite Composition: Tracing Petrogenetic Processes in Transhimalayan Granitoids , 2009 .

[31]  B. Kamber,et al.  Geochemical fingerprinting: 40 years of analytical development and real world applications , 2009 .

[32]  K. Niemax,et al.  Laser ablation inductively coupled plasma mass spectrometry—current shortcomings, practical suggestions for improving performance, and experiments to guide future development , 2009 .

[33]  Shenghong Hu,et al.  Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas , 2008 .

[34]  C. Manning,et al.  Fluorapatite solubility in H2O and H2O–NaCl at 700 to 900 °C and 0.7 to 2.0 GPa , 2008 .

[35]  C. Magee,et al.  Synthesis and Preliminary Characterisation of New Silicate, Phosphate and Titanite Reference Glasses , 2008 .

[36]  K. Jochum,et al.  Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd : YAG laser and matrix-matched calibration , 2007 .

[37]  A. Morton,et al.  Detrital apatite geochemistry and its application in provenance studies , 2007 .

[38]  S. Klemme,et al.  Trace element partitioning between apatite and silicate melts , 2006 .

[39]  K. Farley,et al.  (U Th) / Ne chronometry , 2006 .

[40]  S. Bowring,et al.  U–Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb , 2006 .

[41]  G. Foster,et al.  In situ Nd isotopic analysis of geological materials by laser ablation MC-ICP-MS , 2006 .

[42]  K. Hodges,et al.  U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite: Insights regarding the impact of recoil redistribution of radiogenic 4He on (U–Th)/He thermochronology , 2005 .

[43]  D. Cherniak Uranium and manganese diffusion in apatite , 2005 .

[44]  K. Farley,et al.  A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard , 2005 .

[45]  S. Eggins,et al.  Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation , 2004 .

[46]  K. Jarvis,et al.  Apatite fission-track chronometry using laser ablation ICP-MS , 2004 .

[47]  T. Spell,et al.  Characterization and calibration of 40Ar/39Ar dating standards , 2003 .

[48]  W. Griffin,et al.  Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type , 2002 .

[49]  T. Nijland,et al.  Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: Nature and experiment. Part I. Chlorapatite , 2002 .

[50]  M. Kohn,et al.  Phosphates : Geochemical, Geobiological, and Materials Importance , 2002 .

[51]  P. Candela,et al.  Apatite in Igneous Systems , 2002 .

[52]  D. Cherniak Rare earth element diffusion in apatite , 2000 .

[53]  B. Dupré,et al.  A Routine Method for Oxide and Hydroxide Interference Corrections in ICP‐MS Chemical Analysis of Environmental and Geological Samples , 2000 .

[54]  K. Farley,et al.  Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite , 2000 .

[55]  R. Ketcham,et al.  Variability of apatite fission-track annealing kinetics: I. Experimental results , 1999 .

[56]  K. Farley,et al.  An empirical test of helium diffusion in apatite: borehole data from the Otway basin, Australia , 1999 .

[57]  A. Mank,et al.  A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples , 1999 .

[58]  P. Renne,et al.  Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating , 1998 .

[59]  S. Kesler Metallogenic evolution of convergent margins: Selected ore deposit models , 1997 .

[60]  S. Eggins,et al.  A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation , 1997 .

[61]  K. Farley,et al.  Helium diffusion and low-temperature thermochronometry of apatite , 1996 .

[62]  H. Dill Can REE patterns and U-Th variations be used as a tool to determine the origin of apatite in clastic rocks? , 1995 .

[63]  J. Stormer,et al.  Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis , 1993 .

[64]  John M. Hughes,et al.  Rare-earth-element ordering and structural variations in natural rare-earth-bearing apatites , 1991 .

[65]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[66]  James I. Lyons Volcanogenic iron oxide deposits, Cerro de Mercado and vicinity, Durango , 1988 .

[67]  E. Alexander,et al.  Calibration of the interlaboratory 40Ar39Ar dating standard, MMhb-1 , 1987 .

[68]  P. Roeder,et al.  Cathodoluminescence and microprobe study of rare-earth elements in apatite , 1987 .

[69]  Paul F. Green,et al.  Thermal annealing of fission tracks in apatite: 1. A qualitative description , 1986 .

[70]  A. Baumer,et al.  Determination of OH ions in hydroxyfluorapatites by infrared spectroscopy , 1985 .

[71]  G. Laslett,et al.  The relationship between fission track length and track density in apatite , 1984 .

[72]  Paul F. Green,et al.  The zeta age calibration of fission-track dating , 1983 .

[73]  R. Fleischer,et al.  Age of the apatite at Cerro de Mercado, Mexico: A problem for fission‐track annealing corrections , 1975 .

[74]  T. Märk,et al.  Fission-Track-Alter von Durango-Apatit, Mexiko , 1971 .

[75]  D. R. Shawe,et al.  Mafic-ultramafic layered intrusion at Iron Mountain, Fremont County, Colorado , 1967 .