Realised quantile-based estimation of the integrated variance

In this paper, we propose a new jump-robust quantile-based realised variance measure of ex post return variation that can be computed using potentially noisy data. The estimator is consistent for the integrated variance and we present feasible central limit theorems which show that it converges at the best attainable rate and has excellent efficiency. Asymptotically, the quantile-based realised variance is immune to finite activity jumps and outliers in the price series, while in modified form the estimator is applicable with market microstructure noise and therefore operational on high-frequency data. Simulations show that it has superior robustness properties in finite sample, while an empirical application illustrates its use on equity data.

[1]  N. Shephard,et al.  Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise , 2006 .

[2]  H. Bessembinder,et al.  Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets , 1999 .

[3]  M. Parkinson The Extreme Value Method for Estimating the Variance of the Rate of Return , 1980 .

[4]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[5]  R. Oomen,et al.  Testing for Jumps When Asset Prices are Observed with Noise - A Swap Variance Approach , 2007 .

[6]  Yacine Ait-Sahalia Testing Continuous-Time Models of the Spot Interest Rate , 1995 .

[7]  M. Dacorogna,et al.  Consistent High-Precision Volatility from High-Frequency Data , 2001 .

[8]  F. Mosteller On Some Useful "Inefficient" Statistics , 1946 .

[9]  F. Diebold,et al.  On the Correlation Structure of Microstructure Noise in Theory and Practice , 2008 .

[10]  J. Jacod,et al.  Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data , 2009 .

[11]  Mark Podolskij,et al.  Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps , 2006 .

[12]  N. U. Prabhu,et al.  Stochastic Processes and Their Applications , 1999 .

[13]  Lawrence Fisher,et al.  Some New Stock-Market Indexes , 1966 .

[14]  Kim Christensen,et al.  Appendix to Realised Quantile-Based Estimation of the Integrated Variance , 2009 .

[15]  Lan Zhang Efficient Estimation of Stochastic Volatility Using Noisy Observations: A Multi-Scale Approach , 2004, math/0411397.

[16]  L. Rogers,et al.  Estimating Variance From High, Low and Closing Prices , 1991 .

[17]  M. J. Klass,et al.  On the Estimation of Security Price Volatilities from Historical Data , 1980 .

[18]  Yacine Aït-Sahalia,et al.  Disentangling diffusion from jumps , 2004 .

[19]  Yixiao Sun Best Quadratic Unbiased Estimators of Integrated Variance in the Presence of Market Microstructure Noise , 2006 .

[20]  Federico M. Bandi,et al.  Microstructure Noise, Realized Variance, and Optimal Sampling , 2008 .

[21]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[22]  Fulvio Corsi,et al.  Volatility Determinants : Heterogeneity , Leverage , and Jumps ∗ , 2009 .

[23]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[24]  A. Gallant,et al.  Alternative models for stock price dynamics , 2003 .

[25]  F. Longstaff,et al.  Electricity Forward Prices: A High-Frequency Empirical Analysis , 2002 .

[26]  M. Osborne,et al.  Market Making and Reversal on the Stock Exchange , 1966 .

[27]  Jianqing Fan,et al.  Multi-Scale Jump and Volatility Analysis for High-Frequency Financial Data , 2006 .

[28]  A. V. D. Vaart Asymptotic Statistics: Delta Method , 1998 .

[29]  B. Bollen,et al.  Estimating Daily Volatility in Financial Markets Utilizing Intraday Data , 2002 .

[30]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[31]  F. Diebold,et al.  Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility , 2005, The Review of Economics and Statistics.

[32]  Jean Jacod,et al.  Testing for Jumps in a Discretely Observed Process , 2007 .

[33]  Asger Lunde,et al.  Realized Variance and Market Microstructure Noise , 2006 .

[34]  N. Shephard,et al.  Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation , 2005 .

[35]  Jean Jacod,et al.  Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9 , 2007 .

[36]  Jean Jacod,et al.  Diffusions with measurement errors. I. Local Asymptotic Normality , 2001 .

[37]  T. Bollerslev,et al.  A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects , 2007 .

[38]  Kim Christensen,et al.  Range-Based Estimation of Quadratic Variation , 2006 .

[39]  T. W. Epps Comovements in Stock Prices in the Very Short Run , 1979 .

[40]  D. Dijk,et al.  Measuring volatility with the realized range , 2006 .

[41]  R. Oomen Properties of Realized Variance Under Alternative Sampling Schemes , 2006 .

[42]  S. Shreve,et al.  Methods of Mathematical Finance , 2010 .

[43]  Jean Jacod,et al.  Diffusions with measurement errors. II. Optimal estimators , 2001 .

[44]  R. Oomen Comment (on JBES invited adress "Realized variance and market microstructure noise" by P.R. Hansen and A. Lunde). , 2006 .

[45]  Yuri Kabanov,et al.  From Stochastic Calculus to Mathematical Finance. The Shiryaev Festschrift , 2006 .

[46]  F. Y. Edgeworth On the Probable Errors of Frequency-Constants , 1908 .

[47]  S. Beckers,et al.  Variances of Security Price Returns Based on High , 1983 .

[48]  Jeffrey R. Russell,et al.  Separating Microstructure Noise from Volatility , 2004 .

[49]  P. Mykland A Gaussian calculus for inference from high frequency data , 2010, Annals of Finance.

[50]  C. Mancini Estimation of the Characteristics of the Jumps of a General Poisson-Diffusion Model , 2004 .

[51]  P. Mykland,et al.  Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics , 2008 .

[52]  Jean Jacod,et al.  Asymptotic properties of realized power variations and related functionals of semimartingales , 2006, math/0604450.

[53]  Estimating High-Frequency Based (Co-) Variances: A Unified Approach , 2007 .

[54]  A. V. D. Vaart,et al.  Asymptotic Statistics: U -Statistics , 1998 .

[55]  P. Protter,et al.  Asymptotic error distributions for the Euler method for stochastic differential equations , 1998 .

[56]  P. Mykland,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[57]  Cecilia Mancini Non-parametric Threshold Estimationfor Models with Stochastic DiffusionCoefficient and Jumps , 2006 .

[58]  Jim Gatheral,et al.  Zero-intelligence realized variance estimation , 2009, Finance Stochastics.

[59]  Gurdip Bakshi,et al.  Estimation of Continuous-Time Models with an Application to Equity Volatility Dynamics , 2005 .

[60]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[61]  Jeannette H. C. Woerner Power and Multipower Variation: inference for high frequency data , 2006 .

[62]  G. Schwert Why Does Stock Market Volatility Change Over Time? , 1988 .

[63]  George Tauchen,et al.  Cross-Stock Comparisons of the Relative Contribution of Jumps to Total Price Variance , 2012 .

[64]  F. Diebold,et al.  Realized Beta: Persistence and Predictability , 2004 .

[65]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[66]  Nicholas G. Polson,et al.  Evidence for and the Impact of Jumps in Volatility and Returns , 2001 .

[67]  David Aldous,et al.  On Mixing and Stability of Limit Theorems , 1978 .

[68]  Jun Pan,et al.  Analytical value-at-risk with jumps and credit risk , 2001, Finance Stochastics.

[69]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[70]  Jean Jacod,et al.  A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales , 2004 .

[71]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[72]  W. Feller The Asymptotic Distribution of the Range of Sums of Independent Random Variables , 1951 .

[73]  Anatoly B. Schmidt,et al.  Empirical Market Microstructure , 2011 .

[74]  Neil Shephard,et al.  Limit theorems for multipower variation in the presence of jumps , 2006 .

[75]  P. Hansen,et al.  Realized Variance and Market Microstructure Noise , 2005 .

[76]  Jump Robust Volatility Estimation , 2008 .

[77]  M. Podolskij,et al.  A Note on the Central Limit Theorem for Bipower Variation of General Functions. , 2008 .

[78]  R. Jarrow,et al.  Jump Risks and the Intertemporal Capital Asset Pricing Model , 1984 .

[79]  Jeremy H. Large,et al.  Moving Average-Based Estimators of Integrated Variance , 2008 .

[80]  Edward C. Posner,et al.  Systematic Statistics Used for Data Compression in Space Telemetry , 1965 .

[81]  Mark Podolskij,et al.  Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps , 2007, 0909.0827.

[82]  P. Protter Stochastic integration and differential equations , 1990 .

[83]  Cecilia Mancini,et al.  Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps , 2006, math/0607378.

[84]  Kerry Back,et al.  Asset pricing for general processes , 1991 .

[85]  N. Shephard,et al.  LIMIT THEOREMS FOR BIPOWER VARIATION IN FINANCIAL ECONOMETRICS , 2005, Econometric Theory.