Including principal component weights to improve discrimination in data envelopment analysis

This research further develops the combined use of principal component analysis (PCA) and data envelopment analysis (DEA). The aim is to reduce the curse of dimensionality that occurs in DEA when there is an excessive number of inputs and outputs in relation to the number of decision-making units. Three separate PCA–DEA formulations are developed in the paper utilising the results of PCA to develop objective, assurance region type constraints on the DEA weights. The first model applies PCA to grouped data representing similar themes, such as quality or environmental measures. The second model, if needed, applies PCA to all inputs and separately to all outputs, thus further strengthening the discrimination power of DEA. The third formulation searches for a single set of global weights with which to fully rank all observations. In summary, it is clear that the use of principal components can noticeably improve the strength of DEA models.

[1]  Boaz Golany,et al.  Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions , 1985 .

[2]  T. Ueda,et al.  APPLICATION OF PRINCIPAL COMPONENT ANALYSIS FOR PARSIMONIOUS SUMMARIZATION OF DEA INPUTS AND/OR OUTPUTS , 1997 .

[3]  Jesús T. Pastor,et al.  Chapter 3 Translation invariance in data envelopment analysis: A generalization , 1996, Ann. Oper. Res..

[4]  Francisco J. Arcelus,et al.  Interrelationships among the elements of national innovation systems: A statistical evaluation , 1999, Eur. J. Oper. Res..

[5]  W. Cooper,et al.  Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software , 1999 .

[6]  W. Cook,et al.  A data envelopment model for aggregating preference rankings , 1990 .

[7]  John E. Beasley,et al.  Restricting Weight Flexibility in Data Envelopment Analysis , 1990 .

[8]  Gary R. Reeves,et al.  A multiple criteria approach to data envelopment analysis , 1999, Eur. J. Oper. Res..

[9]  B. Golany A note on including ordinal relations among multipliers in data envelopment analysis , 1988 .

[10]  Boaz Golany,et al.  Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe , 2001, Eur. J. Oper. Res..

[11]  W. Cooper,et al.  RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA , 1999 .

[12]  R. Cranley,et al.  Multivariate Analysis—Methods and Applications , 1985 .