Slow GABA Transient and Receptor Desensitization Shape Synaptic Responses Evoked by Hippocampal Neurogliaform Cells

The kinetics of GABAergic synaptic currents can vary by an order of magnitude depending on the cell type. The neurogliaform cell (NGFC) has recently been identified as a key generator of slow GABAA receptor-mediated volume transmission in the isocortex. However, the mechanisms underlying slow GABAA receptor-mediated IPSCs and their use-dependent plasticity remain unknown. Here, we provide experimental and modeling data showing that hippocampal NGFCs generate an unusually prolonged (tens of milliseconds) but low-concentration (micromolar range) GABA transient, which is responsible for the slow response kinetics and which leads to a robust desensitization of postsynaptic GABAA receptors. This strongly contributes to the use-dependent synaptic depression elicited by various patterns of NGFC activity including the one detected during theta network oscillations in vivo. Synaptic depression mediated by NGFCs is likely to play an important modulatory role in the feedforward inhibition of CA1 pyramidal cells provided by the entorhinal cortex.

[1]  G. Miyoshi,et al.  Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells , 2010, The Journal of Neuroscience.

[2]  K. Rockland,et al.  Expression of COUP-TFII Nuclear Receptor in Restricted GABAergic Neuronal Populations in the Adult Rat Hippocampus , 2010, The Journal of Neuroscience.

[3]  R. Pearce,et al.  Altered GABAA,slow inhibition and network oscillations in mice lacking the GABAA receptor beta3 subunit. , 2009, Journal of neurophysiology.

[4]  Brent Doiron,et al.  Spatial Profile and Differential Recruitment of GABAB Modulate Oscillatory Activity in Auditory Cortex , 2009, The Journal of Neuroscience.

[5]  Csaba Varga,et al.  Complex Events Initiated by Individual Spikes in the Human Cerebral Cortex , 2008, PLoS biology.

[6]  M. Beato The Time Course of Transmitter at Glycinergic Synapses onto Motoneurons , 2008, The Journal of Neuroscience.

[7]  D. Rusakov,et al.  GABAB Receptor Modulation of Feedforward Inhibition through Hippocampal Neurogliaform Cells , 2008, The Journal of Neuroscience.

[8]  A. Thomson,et al.  Synaptic a 5 Subunit--Containing GABA A Receptors Mediate IPSPs Elicited by Dendrite-Preferring Cells in Rat Neocortex , 2008 .

[9]  J. Csicsvari,et al.  Ivy Cells: A Population of Nitric-Oxide-Producing, Slow-Spiking GABAergic Neurons and Their Involvement in Hippocampal Network Activity , 2008, Neuron.

[10]  Jozsef Csicsvari,et al.  Ivy Cells: A Population of Nitric-Oxide-Producing, Slow-Spiking GABAergic Neurons and Their Involvement in Hippocampal Network Activity , 2008, Neuron.

[11]  G. Tamás,et al.  Output of Neurogliaform Cells to Various Neuron Types in the Human and Rat Cerebral Cortex , 2007, Frontiers in neural circuits.

[12]  J. Mozrzymas,et al.  GABA transient sets the susceptibility of mIPSCs to modulation by benzodiazepine receptor agonists in rat hippocampal neurons , 2007, The Journal of physiology.

[13]  Ivan Soltesz,et al.  Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast , 2007, Proceedings of the National Academy of Sciences.

[14]  J. Fisher,et al.  Effect of the α subunit subtype on the macroscopic kinetic properties of recombinant GABAA receptors , 2007, Brain Research.

[15]  J. Huguenard,et al.  GABA Affinity Shapes IPSCs in Thalamic Nuclei , 2007, The Journal of Neuroscience.

[16]  K. Vogt,et al.  Specific subtypes of GABAA receptors mediate phasic and tonic forms of inhibition in hippocampal pyramidal neurons. , 2006, Journal of neurophysiology.

[17]  Dmitri A Rusakov,et al.  Main Determinants of Presynaptic Ca2+ Dynamics at Individual Mossy Fiber–CA3 Pyramidal Cell Synapses , 2006, The Journal of Neuroscience.

[18]  Matthew E. Larkum,et al.  The GABAB1b Isoform Mediates Long-Lasting Inhibition of Dendritic Ca2+ Spikes in Layer 5 Somatosensory Pyramidal Neurons , 2006, Neuron.

[19]  A. Bacci,et al.  Enhancement of Spike-Timing Precision by Autaptic Transmission in Neocortical Inhibitory Interneurons , 2006, Neuron.

[20]  Marco Capogna,et al.  Neurogliaform Neurons Form a Novel Inhibitory Network in the Hippocampal CA1 Area , 2005, The Journal of Neuroscience.

[21]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[22]  D. Kullmann,et al.  Heterogeneity and specificity of presynaptic Ca2+ current modulation by mGluRs at individual hippocampal synapses. , 2004, Cerebral cortex.

[23]  D. Kullmann,et al.  NR2B-Containing Receptors Mediate Cross Talk among Hippocampal Synapses , 2004, The Journal of Neuroscience.

[24]  B. Orser,et al.  Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors , 2004 .

[25]  J. Mozrzymas,et al.  Modulation of GABAA Receptors by Hydrogen Ions Reveals Synaptic GABA Transient and a Crucial Role of the Desensitization Process , 2003, The Journal of Neuroscience.

[26]  G. Westbrook,et al.  Synapse Density Regulates Independence at Unitary Inhibitory Synapses , 2003, The Journal of Neuroscience.

[27]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[28]  G. Westbrook,et al.  Measuring and Modeling the Spatiotemporal Profile of GABA at the Synapse , 2003 .

[29]  A. Thomson,et al.  Modulation of inhibitory autapses and synapses on rat CA1 interneurones by GABAa receptor ligands , 2003, The Journal of physiology.

[30]  P. Jonas,et al.  Microscopic kinetics and energetics distinguish GABA(A) receptor agonists from antagonists. , 2001, Biophysical journal.

[31]  M. Frotscher,et al.  Rapid Signaling at Inhibitory Synapses in a Dentate Gyrus Interneuron Network , 2001, The Journal of Neuroscience.

[32]  G. Westbrook,et al.  Slow Desensitization Regulates the Availability of Synaptic GABAA Receptors , 2000, The Journal of Neuroscience.

[33]  Peter Somogyi,et al.  Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro , 2000, The Journal of physiology.

[34]  M. Nedergaard,et al.  Paired‐pulse modulation at individual GABAergic synapses in rat hippocampus , 2000, The Journal of physiology.

[35]  J. White,et al.  Interactions between Distinct GABAA Circuits in Hippocampus , 2000, Neuron.

[36]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[37]  E. Schuman,et al.  Patterned activity in stratum lacunosum moleculare inhibits CA1 pyramidal neuron firing. , 1999, Journal of neurophysiology.

[38]  N. Ropert,et al.  Effect of Zolpidem on Miniature IPSCs and Occupancy of Postsynaptic GABAA Receptors in Central Synapses , 1999, The Journal of Neuroscience.

[39]  G. Westbrook,et al.  Defining Affinity with the GABAA Receptor , 1998, The Journal of Neuroscience.

[40]  Matthew I. Banks,et al.  The Synaptic Basis of GABAA,slow , 1998, The Journal of Neuroscience.

[41]  I. Módy,et al.  Synaptic Communication among Hippocampal Interneurons: Properties of Spontaneous IPSCs in Morphologically Identified Cells , 1997, The Journal of Neuroscience.

[42]  J. Mellor,et al.  Frequency‐Dependent Actions of Benzodiazepines on GABAA Receptors in Cultured Murine Cerebellar Granule Cells , 1997, The Journal of physiology.

[43]  P. Whiting,et al.  Neuronally Restricted RNA Splicing Regulates the Expression of a Novel GABAA Receptor Subunit Conferring Atypical Functional Properties , 1997, The Journal of Neuroscience.

[44]  J. Lacaille,et al.  Properties of unitary IPSCs in hippocampal pyramidal cells originating from different types of interneurons in young rats. , 1997, Journal of neurophysiology.

[45]  G. Westbrook,et al.  Desensitized states prolong GABAA channel responses to brief agonist pulses , 1995, Neuron.

[46]  Robert A. Pearce,et al.  Physiological evidence for two distinct GABAA responses in rat hippocampus , 1993, Neuron.

[47]  J. Fisher,et al.  Effect of the alpha subunit subtype on the macroscopic kinetic properties of recombinant GABA(A) receptors. , 2007, Brain research.

[48]  I. Módy,et al.  A new naturally occurring GABAA receptor subunit partnership with high sensitivity to ethanol , 2007, Nature Neuroscience.

[49]  W. Betz,et al.  Synaptic vesicle pools , 2005, Nature Reviews Neuroscience.

[50]  B. Orser,et al.  Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[52]  P. Seeburg,et al.  Molecular determinants in GABAA/BZ receptor subtypes. , 1992, Advances in biochemical psychopharmacology.

[53]  Alan G. Hawkes,et al.  The Principles of the Stochastic Interpretation of Ion-Channel Mechanisms , 1983 .

[54]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..