Errors, Recovery Processes, and Error Estimates

[1]  Juan José Ródenas,et al.  Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR‐C technique , 2007 .

[2]  Pedro Díez,et al.  Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error , 2007 .

[3]  Francesco Ubertini,et al.  A posteriori error estimation based on the superconvergent Recovery by Compatibility in Patches , 2006 .

[4]  Antonio Huerta,et al.  The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations , 2006 .

[5]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[6]  Francesco Ubertini,et al.  Patch recovery based on complementary energy , 2004 .

[7]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[8]  Qinghua Zhao,et al.  SPR technique and finite element correction , 2003, Numerische Mathematik.

[9]  Zhimin Zhang,et al.  Ultraconvergence of ZZ patch recovery at mesh symmetry points , 2003, Numerische Mathematik.

[10]  Pedro Díez,et al.  Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates , 2003 .

[11]  Carsten Carstensen,et al.  Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening , 2003 .

[12]  J. Tinsley Oden,et al.  Practical methods for a posteriori error estimation in engineering applications , 2003 .

[13]  Marco Picasso,et al.  An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..

[14]  Anthony T. Patera,et al.  A General Lagrangian Formulation for the Computation of A Posteriori Finite Element Bounds , 2003 .

[15]  Xue-Cheng Tai,et al.  Superconvergence for the Gradient of Finite Element Approximations by L2 Projections , 2002, SIAM J. Numer. Anal..

[16]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[17]  S. Ohnimus,et al.  Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems , 2001 .

[18]  Anthony T. Patera,et al.  A posteriori finite-element output bounds for the incompressible Navier-Stokes equations: application to a natural convection problem , 2001 .

[19]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[20]  J. Oden,et al.  Goal-oriented error estimation and adaptivity for the finite element method , 2001 .

[21]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[22]  Pedro Díez,et al.  Error estimation including pollution assessment for nonlinear finite element analysis , 2000 .

[23]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[24]  Zhimin Zhang Ultraconvergence of the patch recovery technique II , 2000, Math. Comput..

[25]  O. C. Zienkiewicz,et al.  Recovery procedures in error estimation and adaptivity Part I: Adaptivity in linear problems , 1999 .

[26]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[27]  Anthony T. Patera,et al.  A general formulation for a posteriori bounds for output functionals of partial differential equations; application to the eigenvalue problem* , 1999 .

[28]  Bo Li,et al.  Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements , 1999 .

[29]  Anthony T. Patera,et al.  Output bound approximations for partial differential equations; application to the incompressible navier-stokes equations , 1999 .

[30]  Anthony T. Patera,et al.  Asymptotic a Posteriori Finite Element Bounds for the Outputs of Noncoercive Problems: the Helmholtz , 1999 .

[31]  Pedro Díez,et al.  A posteriori error estimation for standard finite element analysis , 1998 .

[32]  Zhimin Zhang,et al.  Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (II) , 1998 .

[33]  Knut Morten Okstad,et al.  Error estimation based on Superconvergent Patch Recovery using statically admissible stress fields , 1998 .

[34]  Rolf Rannacher,et al.  A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity , 1998 .

[35]  Nils-Erik Wiberg,et al.  Error estimation and adaptivity for h-version eigenfrequency analysis , 1998 .

[36]  J. Z. Zhu A posteriori error estimation—the relationship between different procedures , 1997 .

[37]  J. Peraire,et al.  A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .

[38]  Mark Ainsworth,et al.  Post-processing with computable error bounds for the finite element approximation of a nonlinear heat conduction problem , 1997 .

[39]  Bijan Boroomand,et al.  An improved REP recovery and the effectivity robustness test , 1997 .

[40]  Ivo Babuška,et al.  A MODEL STUDY OF THE QUALITY OF A POSTERIORI ERROR ESTIMATORS FOR FINITE ELEMENT SOLUTIONS OF LINEAR ELLIPTIC PROBLEMS, WITH PARTICULAR REFERENCE TO THE BEHAVIOR NEAR THE BOUNDARY , 1997 .

[41]  R. Rannacher,et al.  A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .

[42]  Taeoh Lee,et al.  A SUPERCONVERGENT STRESS RECOVERY TECHNIQUE WITH EQUILIBRIUM CONSTRAINT , 1997 .

[43]  Bijan Boroomand,et al.  RECOVERY BY EQUILIBRIUM IN PATCHES (REP) , 1997 .

[44]  Zhimin Zhang,et al.  Mathematical analysis of Zienkiewicz—Zhu's derivative patch recovery technique , 1996 .

[45]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[46]  N. Wiberg,et al.  A posteriori error estimate by element patch post-processing, adaptive analysis in energy and L2 norms , 1994 .

[47]  Nils-Erik Wiberg,et al.  Enhanced Superconvergent Patch Recovery incorporating equilibrium and boundary conditions , 1994 .

[48]  R. Rodríguez Some remarks on Zienkiewicz‐Zhu estimator , 1994 .

[49]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[50]  Ivo Babuška,et al.  Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .

[51]  I. Babuska,et al.  A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles , 1994 .

[52]  Nils-Erik Wiberg,et al.  Superconvergent patch recovery of finite‐element solution and a posteriori L2 norm error estimate , 1994 .

[53]  Ted Belytschko,et al.  Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements , 1994 .

[54]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[55]  O. C. Zienkiewicz,et al.  Superconvergent patch recovery techniques – some further tests , 1993 .

[56]  Nils-Erik Wiberg,et al.  Patch recovery based on superconvergent derivatives and equilibrium , 1993 .

[57]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .

[58]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[59]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[60]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[61]  M. Kitamura,et al.  Numerical investigation of element-wise a posteriori error estimation in two and three dimensional elastic problems , 1992 .

[62]  Pierre Ladevèze,et al.  ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .

[63]  J. Z. Zhu,et al.  Superconvergence recovery technique and a posteriori error estimators , 1990 .

[64]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[65]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[66]  Pekka Neittaanmäki,et al.  On superconvergence techniques , 1987 .

[67]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[68]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[69]  Ivo Babuška,et al.  The Post-Processing Approach in the Finite Element Method. Part 3. A Posteriori Error Estimates and Adaptive Mesh Selection. , 1984 .

[70]  D. Kelly,et al.  The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .

[71]  Ivo Babuška,et al.  The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .

[72]  Ivo Babuška,et al.  The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .

[73]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[74]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[75]  O. Zienkiewicz,et al.  The hierarchical concept in finite element analysis , 1983 .

[76]  Ivo Babuška,et al.  Reliable error estimation and mesh adaptation for the finite element method , 1979 .

[77]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[78]  J. Barlow,et al.  Optimal stress locations in finite element models , 1976 .

[79]  John S. Campbell,et al.  Local and global smoothing of discontinuous finite element functions using a least squares method , 1974 .

[80]  J. T. Oden,et al.  On the calculation of consistent stress distributions in finite element approximations , 1971 .

[81]  O. Zienkiewicz,et al.  Strain-energy bounds in finite-element analysis by slab analogy , 1967 .

[82]  Baudouin Fraeijs de Veubeke,et al.  Bending and stretching of plates special models for upper and lower bounds , 1966 .