Errors, Recovery Processes, and Error Estimates
暂无分享,去创建一个
[1] Juan José Ródenas,et al. Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR‐C technique , 2007 .
[2] Pedro Díez,et al. Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error , 2007 .
[3] Francesco Ubertini,et al. A posteriori error estimation based on the superconvergent Recovery by Compatibility in Patches , 2006 .
[4] Antonio Huerta,et al. The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations , 2006 .
[5] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[6] Francesco Ubertini,et al. Patch recovery based on complementary energy , 2004 .
[7] Zhimin Zhang,et al. Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..
[8] Qinghua Zhao,et al. SPR technique and finite element correction , 2003, Numerische Mathematik.
[9] Zhimin Zhang,et al. Ultraconvergence of ZZ patch recovery at mesh symmetry points , 2003, Numerische Mathematik.
[10] Pedro Díez,et al. Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates , 2003 .
[11] Carsten Carstensen,et al. Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening , 2003 .
[12] J. Tinsley Oden,et al. Practical methods for a posteriori error estimation in engineering applications , 2003 .
[13] Marco Picasso,et al. An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..
[14] Anthony T. Patera,et al. A General Lagrangian Formulation for the Computation of A Posteriori Finite Element Bounds , 2003 .
[15] Xue-Cheng Tai,et al. Superconvergence for the Gradient of Finite Element Approximations by L2 Projections , 2002, SIAM J. Numer. Anal..
[16] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[17] S. Ohnimus,et al. Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems , 2001 .
[18] Anthony T. Patera,et al. A posteriori finite-element output bounds for the incompressible Navier-Stokes equations: application to a natural convection problem , 2001 .
[19] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[20] J. Oden,et al. Goal-oriented error estimation and adaptivity for the finite element method , 2001 .
[21] I. Babuska,et al. The finite element method and its reliability , 2001 .
[22] Pedro Díez,et al. Error estimation including pollution assessment for nonlinear finite element analysis , 2000 .
[23] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[24] Zhimin Zhang. Ultraconvergence of the patch recovery technique II , 2000, Math. Comput..
[25] O. C. Zienkiewicz,et al. Recovery procedures in error estimation and adaptivity Part I: Adaptivity in linear problems , 1999 .
[26] Serge Prudhomme,et al. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .
[27] Anthony T. Patera,et al. A general formulation for a posteriori bounds for output functionals of partial differential equations; application to the eigenvalue problem* , 1999 .
[28] Bo Li,et al. Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements , 1999 .
[29] Anthony T. Patera,et al. Output bound approximations for partial differential equations; application to the incompressible navier-stokes equations , 1999 .
[30] Anthony T. Patera,et al. Asymptotic a Posteriori Finite Element Bounds for the Outputs of Noncoercive Problems: the Helmholtz , 1999 .
[31] Pedro Díez,et al. A posteriori error estimation for standard finite element analysis , 1998 .
[32] Zhimin Zhang,et al. Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (II) , 1998 .
[33] Knut Morten Okstad,et al. Error estimation based on Superconvergent Patch Recovery using statically admissible stress fields , 1998 .
[34] Rolf Rannacher,et al. A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity , 1998 .
[35] Nils-Erik Wiberg,et al. Error estimation and adaptivity for h-version eigenfrequency analysis , 1998 .
[36] J. Z. Zhu. A posteriori error estimation—the relationship between different procedures , 1997 .
[37] J. Peraire,et al. A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .
[38] Mark Ainsworth,et al. Post-processing with computable error bounds for the finite element approximation of a nonlinear heat conduction problem , 1997 .
[39] Bijan Boroomand,et al. An improved REP recovery and the effectivity robustness test , 1997 .
[40] Ivo Babuška,et al. A MODEL STUDY OF THE QUALITY OF A POSTERIORI ERROR ESTIMATORS FOR FINITE ELEMENT SOLUTIONS OF LINEAR ELLIPTIC PROBLEMS, WITH PARTICULAR REFERENCE TO THE BEHAVIOR NEAR THE BOUNDARY , 1997 .
[41] R. Rannacher,et al. A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .
[42] Taeoh Lee,et al. A SUPERCONVERGENT STRESS RECOVERY TECHNIQUE WITH EQUILIBRIUM CONSTRAINT , 1997 .
[43] Bijan Boroomand,et al. RECOVERY BY EQUILIBRIUM IN PATCHES (REP) , 1997 .
[44] Zhimin Zhang,et al. Mathematical analysis of Zienkiewicz—Zhu's derivative patch recovery technique , 1996 .
[45] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[46] N. Wiberg,et al. A posteriori error estimate by element patch post-processing, adaptive analysis in energy and L2 norms , 1994 .
[47] Nils-Erik Wiberg,et al. Enhanced Superconvergent Patch Recovery incorporating equilibrium and boundary conditions , 1994 .
[48] R. Rodríguez. Some remarks on Zienkiewicz‐Zhu estimator , 1994 .
[49] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[50] Ivo Babuška,et al. Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .
[51] I. Babuska,et al. A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles , 1994 .
[52] Nils-Erik Wiberg,et al. Superconvergent patch recovery of finite‐element solution and a posteriori L2 norm error estimate , 1994 .
[53] Ted Belytschko,et al. Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements , 1994 .
[54] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[55] O. C. Zienkiewicz,et al. Superconvergent patch recovery techniques – some further tests , 1993 .
[56] Nils-Erik Wiberg,et al. Patch recovery based on superconvergent derivatives and equilibrium , 1993 .
[57] O. C. Zienkiewicz,et al. The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .
[58] Claes Johnson,et al. Adaptive finite element methods in computational mechanics , 1992 .
[59] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[60] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[61] M. Kitamura,et al. Numerical investigation of element-wise a posteriori error estimation in two and three dimensional elastic problems , 1992 .
[62] Pierre Ladevèze,et al. ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .
[63] J. Z. Zhu,et al. Superconvergence recovery technique and a posteriori error estimators , 1990 .
[64] J. Oden,et al. Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .
[65] R. Verfürth. A posteriori error estimators for the Stokes equations , 1989 .
[66] Pekka Neittaanmäki,et al. On superconvergence techniques , 1987 .
[67] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[68] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[69] Ivo Babuška,et al. The Post-Processing Approach in the Finite Element Method. Part 3. A Posteriori Error Estimates and Adaptive Mesh Selection. , 1984 .
[70] D. Kelly,et al. The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .
[71] Ivo Babuška,et al. The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .
[72] Ivo Babuška,et al. The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .
[73] Ivo Babuška,et al. A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .
[74] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[75] O. Zienkiewicz,et al. The hierarchical concept in finite element analysis , 1983 .
[76] Ivo Babuška,et al. Reliable error estimation and mesh adaptation for the finite element method , 1979 .
[77] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[78] J. Barlow,et al. Optimal stress locations in finite element models , 1976 .
[79] John S. Campbell,et al. Local and global smoothing of discontinuous finite element functions using a least squares method , 1974 .
[80] J. T. Oden,et al. On the calculation of consistent stress distributions in finite element approximations , 1971 .
[81] O. Zienkiewicz,et al. Strain-energy bounds in finite-element analysis by slab analogy , 1967 .
[82] Baudouin Fraeijs de Veubeke,et al. Bending and stretching of plates special models for upper and lower bounds , 1966 .