Partitioned Runge-Kutta-Chebyshev Methods for Diffusion-Advection-Reaction Problems

An integration method based on Runge-Kutta-Chebyshev (RKC) methods is discussed which has been designed to treat moderately stiff and nonstiff terms separately. The method, called partitioned Runge-Kutta-Chebyshev (PRKC), is a one-step, partitioned RK method of second order. It belongs to the class of stabilized methods, namely explicit RK methods possessing extended real stability intervals. The aim of the PRKC method is to reduce the number of function evaluations of the nonstiff terms and to get a nonzero imaginary stability boundary.

[1]  Willem Hundsdorfer,et al.  Convergence properties of the Runge-Kutta-Chebyshev method , 1990 .

[2]  Manuel Torrilhon,et al.  Essentially optimal explicit Runge–Kutta methods with application to hyperbolic–parabolic equations , 2007, Numerische Mathematik.

[3]  Willem Hundsdorfer,et al.  RKC time-stepping for advection-diffusion-reaction problems , 2004 .

[4]  P. Houwen,et al.  On the Internal Stability of Explicit, m‐Stage Runge‐Kutta Methods for Large m‐Values , 1979 .

[5]  Jan G. Verwer,et al.  On stabilized integration for time-dependent PDEs , 2006, J. Comput. Phys..

[6]  L. Shampine,et al.  RKC: an explicit solver for parabolic PDEs , 1998 .

[7]  A. Medovikov High order explicit methods for parabolic equations , 1998 .

[8]  Jan G. Verwer,et al.  An Implicit-Explicit Runge-Kutta-Chebyshev Scheme for Diffusion-Reaction Equations , 2004, SIAM J. Sci. Comput..

[9]  Assyr Abdulle,et al.  Second order Chebyshev methods based on orthogonal polynomials , 2001, Numerische Mathematik.

[10]  Assyr Abdulle,et al.  Fourth Order Chebyshev Methods with Recurrence Relation , 2001, SIAM J. Sci. Comput..

[11]  Lawrence F. Shampine,et al.  IRKC: an IMEX solver for stiff diffusion-reaction PDEs , 2005 .

[12]  J. G. Verwer,et al.  Solving parabolic integro-differential equations by an explicit integration method , 1992 .

[13]  Ben P. Sommeijer,et al.  A performance evaluation of a class of runge-kutta-chebyshev methods for solving semi-discrete parabolic differential equations , 1980 .

[14]  V. I. Lebedev,et al.  Explicit difference schemes for solving stiff problems with a complex or separable spectrum , 2000 .

[15]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .