Identification and characterisation of de novo germline structural variants in two commercial pig lines using trio-based whole genome sequencing

[1]  R. Fenton,et al.  The Hydrogen-Coupled Oligopeptide Membrane Cotransporter Pept2 is SUMOylated in Kidney Distal Convoluted Tubule Cells , 2021, Frontiers in Molecular Biosciences.

[2]  F. Al-Allaf,et al.  The Co-existence of ADHD With Autism in Saudi Children: An Analysis Using Next-Generation DNA Sequencing , 2020, Frontiers in Genetics.

[3]  Eric M Weitz,et al.  Accessing NCBI data using the NCBI Sequence Viewer and Genome Data Viewer (GDV) , 2020, Genome research.

[4]  A. V. Anagnostopoulos,et al.  Mouse Genome Database (MGD): Knowledgebase for mouse–human comparative biology , 2020, Nucleic Acids Res..

[5]  Brent S. Pedersen,et al.  De novo structural mutation rates and gamete-of-origin biases revealed through genome sequencing of 2,396 families , 2020, bioRxiv.

[6]  T. Beaty,et al.  Genome-wide Enrichment of De Novo Coding Mutations in Orofacial Cleft Trios. , 2020, American journal of human genetics.

[7]  Eric S. Lander,et al.  Mapping and characterization of structural variation in 17,795 human genomes , 2020, Nature.

[8]  Toshiyuki Yamamoto,et al.  Analyses of breakpoint junctions of complex genomic rearrangements comprising multiple consecutive microdeletions by nanopore sequencing , 2020, Journal of Human Genetics.

[9]  J. Lupski,et al.  Distinct patterns of complex rearrangements and a mutational signature of microhomeology are frequently observed in PLP1 copy number gain structural variants , 2019, Genome Medicine.

[10]  Christophe Dessimoz,et al.  Structural variant calling: the long and the short of it , 2019, Genome Biology.

[11]  Brent S. Pedersen,et al.  Large, three-generation human families reveal post-zygotic mosaicism and variability in germline mutation accumulation , 2019, eLife.

[12]  Thomas M. Keane,et al.  Similarities and differences in patterns of germline mutation between mice and humans , 2019, Nature Communications.

[13]  J. Rogers,et al.  Origins and Long-Term Patterns of Copy-Number Variation in Rhesus Macaques , 2019, bioRxiv.

[14]  Yanming Feng,et al.  A clinical survey of mosaic single nucleotide variants in disease-causing genes detected by exome sequencing , 2019, Genome Medicine.

[15]  Leon Di Stefano,et al.  Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software , 2019, Nature Communications.

[16]  J. Novembre,et al.  De Novo Mutation Rate Estimation in Wolves of Known Pedigree , 2019, Molecular biology and evolution.

[17]  Brent S. Pedersen,et al.  Duphold: scalable, depth-based annotation and curation of high-confidence structural variant calls , 2019, GigaScience.

[18]  A. Valencia,et al.  Intronic CNVs and gene expression variation in human populations , 2019, PLoS genetics.

[19]  Haley J. Abel,et al.  svtools: population-scale analysis of structural variation , 2018, bioRxiv.

[20]  Chang Liu,et al.  Copy number variations of MTHFSD gene across pig breeds and its association with litter size traits in Chinese indigenous Xiang pig , 2018, Journal of animal physiology and animal nutrition.

[21]  Jinyu Wu,et al.  Identification of de novo germline mutations and causal genes for sporadic diseases using trio‐based whole‐exome/genome sequencing , 2018, Biological reviews of the Cambridge Philosophical Society.

[22]  O. Gokcumen,et al.  Fine-Scale Characterization of Genomic Structural Variation in the Human Genome Reveals Adaptive and Biomedically Relevant Hotspots , 2018, bioRxiv.

[23]  M. Panigrahi,et al.  Copy number variation in livestock: A mini review , 2018, Veterinary world.

[24]  Pieter B. T. Neerincx,et al.  Germline de novo mutation clusters arise during oocyte aging in genomic regions with high double-strand-break incidence , 2018, Nature Genetics.

[25]  Emily C. Dykhuizen,et al.  Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes , 2018, The Journal of Biological Chemistry.

[26]  Lu Wang,et al.  PigVar: a database of pig variations and positive selection signatures , 2017, Database J. Biol. Databases Curation.

[27]  Mats E. Pettersson,et al.  Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate , 2017, bioRxiv.

[28]  Petr Danecek,et al.  BCFtools/csq: haplotype-aware variant consequences , 2016, bioRxiv.

[29]  D. Gudbjartsson,et al.  Multi-nucleotide de novo Mutations in Humans , 2016, PLoS genetics.

[30]  E. Mullaart,et al.  Frequency of mosaicism points towards mutation-prone early cleavage cell divisions in cattle , 2016, bioRxiv.

[31]  Jacqueline A. Keane,et al.  An extended genotyping framework for Salmonella enterica serovar Typhi, the cause of human typhoid , 2016, Nature Communications.

[32]  Lisa X. Yu,et al.  High-throughput discovery of novel developmental phenotypes , 2016, Nature.

[33]  H. Ellegren,et al.  Direct estimate of the rate of germline mutation in a bird , 2016, Genome research.

[34]  J. Roach,et al.  Parent-of-origin-specific signatures of de novo mutations , 2016, Nature Genetics.

[35]  Tsippi Iny Stein,et al.  The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses , 2016, Current protocols in bioinformatics.

[36]  Amina Noor,et al.  Frequency and Complexity of De Novo Structural Mutation in Autism. , 2016, American journal of human genetics.

[37]  D. Bonthron,et al.  Biallelic Mutations in PDE10A Lead to Loss of Striatal PDE10A and a Hyperkinetic Movement Disorder with Onset in Infancy. , 2016, American journal of human genetics.

[38]  L. Vissers,et al.  De Novo Mutations in PDE10A Cause Childhood-Onset Chorea with Bilateral Striatal Lesions , 2016, American journal of human genetics.

[39]  M. K. Rudd,et al.  Human Structural Variation: Mechanisms of Chromosome Rearrangements. , 2015, Trends in genetics : TIG.

[40]  G. Escaramís,et al.  A decade of structural variants: description, history and methods to detect structural variation. , 2015, Briefings in functional genomics.

[41]  Morris Swertz,et al.  Genome-wide patterns and properties of de novo mutations in humans , 2015, Nature Genetics.

[42]  Hugo Y. K. Lam,et al.  Analysis of deletion breakpoints from 1,092 humans reveals details of mutation mechanisms , 2015, Nature Communications.

[43]  Ryan M. Layer,et al.  SpeedSeq: Ultra-fast personal genome analysis and interpretation , 2014, Nature Methods.

[44]  Gil McVean,et al.  Strong male bias drives germline mutation in chimpanzees , 2014, Science.

[45]  D. Bickhart,et al.  The challenges and importance of structural variation detection in livestock , 2014, Front. Genet..

[46]  Evan E Eichler,et al.  Properties and rates of germline mutations in humans. , 2013, Trends in genetics : TIG.

[47]  Eva Chmielnicki Neurodegeneration: A repeat offense , 2013, Nature Medicine.

[48]  Lilia M. Iakoucheva,et al.  Whole-Genome Sequencing in Autism Identifies Hot Spots for De Novo Germline Mutation , 2012, Cell.

[49]  Ryan M. Layer,et al.  LUMPY: a probabilistic framework for structural variant discovery , 2012, Genome Biology.

[50]  S. Steinberg,et al.  Rate of de novo mutations, father’s age, and disease risk , 2012, Nature.

[51]  J. Veltman,et al.  De novo mutations in human genetic disease , 2012, Nature Reviews Genetics.

[52]  D. Bickhart,et al.  Copy number variation in the cattle genome , 2012, Functional & Integrative Genomics.

[53]  Xiaoxiang Hu,et al.  A genome-wide survey of copy number variation regions in various chicken breeds by array comparative genomic hybridization method. , 2012, Animal genetics.

[54]  G. Kirov,et al.  De novo mutation in schizophrenia. , 2012, Schizophrenia bulletin.

[55]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[56]  Ira M. Hall,et al.  Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome. , 2010, Genome research.

[57]  S. Reitmanova Knowledge translation in health research: A novel approach to health sciences education , 2009, Medical education online.

[58]  J. Lupski,et al.  Mechanisms of change in gene copy number , 2009, Nature Reviews Genetics.

[59]  J. Lupski,et al.  The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans , 2009, Nature Genetics.

[60]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[61]  J. Lupski,et al.  A Microhomology-Mediated Break-Induced Replication Model for the Origin of Human Copy Number Variation , 2009, PLoS genetics.

[62]  J. Siuciak,et al.  Behavioral characterization of mice deficient in the phosphodiesterase-10A (PDE10A) enzyme on a C57/Bl6N congenic background , 2008, Neuropharmacology.

[63]  Michael M. Murphy,et al.  IgH class switching and translocations use a robust non-classical end-joining pathway , 2007, Nature.

[64]  R. Redon,et al.  Relative Impact of Nucleotide and Copy Number Variation on Gene Expression Phenotypes , 2007, Science.

[65]  F. Menniti,et al.  Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: Evidence for altered striatal function , 2006, Neuropharmacology.

[66]  J. Crow The origins, patterns and implications of human spontaneous mutation , 2000, Nature Reviews Genetics.

[67]  A. Agresti,et al.  Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions , 1998 .

[68]  OUP accepted manuscript , 2021, Nucleic Acids Research.

[69]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[70]  Sequence analysis Advance Access publication June 7, 2011 The variant call format and VCFtools , 2010 .

[71]  R. Fenton,et al.  Genomic Organization of the Mammalian SLC14a2 Urea Transporter Genes , 2006, The Journal of Membrane Biology.

[72]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[73]  Heng Li,et al.  BIOINFORMATICS ORIGINAL PAPER , 2022 .