On Hamiltonian cycles in hypergraphs with dense link graphs

We show that every $k$-uniform hypergraph on $n$ vertices whose minimum $(k-2)$-degree is at least $(5/9+o(1))n^2/2$ contains a Hamiltonian cycle. A construction due to Han and Zhao shows that this minimum degree condition is optimal. The same result was proved independently by Lang and Sahueza-Matamala.

[1]  R. Lang,et al.  Minimum degree conditions for tight Hamilton cycles , 2020, Journal of the London Mathematical Society.

[2]  Noga Alon,et al.  Non-averaging Subsets and Non-vanishing Transversals , 1999, J. Comb. Theory, Ser. A.

[3]  P. Erdös On extremal problems of graphs and generalized graphs , 1964 .

[4]  Claude Berge,et al.  The theory of graphs and its applications , 1962 .

[5]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[6]  Joonkyung Lee Counting tree-like graphs in locally dense graphs , 2017, 1707.02916.

[7]  Yi Zhao,et al.  Forbidding Hamilton cycles in uniform hypergraphs , 2015, J. Comb. Theory, Ser. A.

[8]  M. Schacht,et al.  Localised codegree conditions for tight Hamiltonian cycles in 3-uniform hypergraphs , 2019, 2005.11942.

[9]  Miklós Simonovits,et al.  Supersaturated graphs and hypergraphs , 1983, Comb..

[10]  Katherine Staden,et al.  On Degree Sequences Forcing The Square of a Hamilton Cycle , 2014, SIAM J. Discret. Math..

[11]  Alexander Sidorenko,et al.  A correlation inequality for bipartite graphs , 1993, Graphs Comb..

[12]  P. Lax Proof of a conjecture of P. Erdös on the derivative of a polynomial , 1944 .

[13]  V. Chvátal On Hamilton's ideals , 1972 .

[14]  Mathias Schacht,et al.  Minimum vertex degree condition for tight Hamiltonian cycles in 3‐uniform hypergraphs , 2016, Proceedings of the London Mathematical Society.

[15]  E. Szemerédi Is laziness paying off? ("Absorbing" method) , 2013 .

[16]  B. Schülke A pair-degree condition for Hamiltonian cycles in $3$-uniform hypergraphs , 2019 .

[17]  Matthew Fitch,et al.  Rational exponents for hypergraph Turan problems , 2016, Journal of Combinatorics.

[18]  G. R. Blakley,et al.  A Hölder type inequality for symmetric matrices with nonnegative entries , 1965 .

[20]  F. Harary,et al.  The theory of graphs and its applications , 1963 .

[21]  Joonkyung Lee On some graph densities in locally dense graphs , 2021, Random Struct. Algorithms.

[22]  M. Simonovits Extremal Graph Problems , Degenerate Extremal Problems , and Supersaturated Graphs , 2010 .

[23]  Andrew Treglown,et al.  A degree sequence Hajnal-Szemerédi theorem , 2014, J. Comb. Theory, Ser. B.

[24]  B. Schulke A pair-degree condition for Hamiltonian cycles in $3$-uniform hypergraphs , 2019, 1910.02691.

[25]  Gyula Y. Katona,et al.  Hamiltonian chains in hypergraphs , 2006, J. Graph Theory.

[26]  Vojtech Rödl,et al.  An approximate Dirac-type theorem for k-uniform hypergraphs , 2008, Comb..