Application of real-time quaking-induced conversion in Creutzfeldt–Jakob disease surveillance

[1]  S. Hornemann,et al.  Concordance of cerebrospinal fluid real‐time quaking‐induced conversion across the European Creutzfeldt–Jakob Disease Surveillance Network , 2022, European Journal of Neurology.

[2]  I. Zerr,et al.  Rapidly progressive dementias — aetiologies, diagnosis and management , 2022, Nature Reviews Neurology.

[3]  I. Zerr Laboratory Diagnosis of Creutzfeldt-Jakob Disease. , 2022, The New England journal of medicine.

[4]  J. Collinge,et al.  Assessing initial MRI reports for suspected CJD patients , 2022, Journal of Neurology.

[5]  G. Escaramís,et al.  Diagnostic accuracy of cerebrospinal fluid biomarkers in genetic prion diseases , 2022, Brain : a journal of neurology.

[6]  J. Wiltfang,et al.  Total and Phosphorylated Cerebrospinal Fluid Tau in the Differential Diagnosis of Sporadic Creutzfeldt-Jakob Disease and Rapidly Progressive Alzheimer’s Disease , 2022, Viruses.

[7]  I. Zerr,et al.  Validation of Revised International Creutzfeldt-Jakob Disease Surveillance Network Diagnostic Criteria for Sporadic Creutzfeldt-Jakob Disease , 2022, JAMA network open.

[8]  C. D. De Luca,et al.  Sporadic Creutzfeldt-Jakob disease: Real-Time Quaking-Induced Conversion (RT-QuIC) assay represents a major diagnostic advance , 2021, European journal of histochemistry : EJH.

[9]  I. Zerr,et al.  The importance of ongoing international surveillance for Creutzfeldt–Jakob disease , 2021, Nature Reviews Neurology.

[10]  B. Caughey,et al.  Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease , 2021, The Lancet Neurology.

[11]  OUP accepted manuscript , 2021, Brain.

[12]  A. Bizzi,et al.  Subtype Diagnosis of Sporadic Creutzfeldt–Jakob Disease with Diffusion Magnetic Resonance Imaging , 2020, Annals of neurology.

[13]  G. Jansen,et al.  Prospective Study Demonstrates Utility of EP-QuIC in Creutzfeldt–Jakob Disease Diagnoses , 2020, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[14]  L. Schonberger,et al.  Diagnosis of prion diseases by RT-QuIC results in improved surveillance , 2020, Neurology.

[15]  G. Plazzi,et al.  Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies , 2020, Acta Neuropathologica.

[16]  C. Carroll,et al.  Creutzfeldt-Jakob disease: a systematic review of global incidence, prevalence, infectivity, and incubation. , 2020, The Lancet. Infectious diseases.

[17]  B. Ghetti,et al.  α‐Synuclein RT‐QuIC assay in cerebrospinal fluid of patients with dementia with Lewy bodies , 2019, Annals of clinical and translational neurology.

[18]  A. Green,et al.  Diagnostic value of surrogate CSF biomarkers for Creutzfeldt–Jakob disease in the era of RT-QuIC , 2019, Journal of Neurology.

[19]  J. Burneo,et al.  The Predictive Value of Endpoint Quaking-Induced Conversion in Creutzfeldt-Jakob Disease , 2019, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[20]  W. Schulz-Schaeffer,et al.  Validation and utilization of amended diagnostic criteria in Creutzfeldt-Jakob disease surveillance , 2018, Neurology.

[21]  J. Collinge,et al.  Imaging and CSF analyses effectively distinguish CJD from its mimics , 2017, Journal of Neurology, Neurosurgery, and Psychiatry.

[22]  C. Duyckaerts,et al.  Accuracy of diagnosis criteria in patients with suspected diagnosis of sporadic Creutzfeldt-Jakob disease and detection of 14-3-3 protein, France, 1992 to 2009 , 2017, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[23]  B. Caughey,et al.  High diagnostic value of second generation CSF RT-QuIC across the wide spectrum of CJD prions , 2017, Scientific Reports.

[24]  T. Asano,et al.  An autopsy-verified case of steroid-responsive encephalopathy with convulsion and a false-positive result from the real-time quaking-induced conversion assay , 2017, Prion.

[25]  A. Green,et al.  Prion-specific and surrogate CSF biomarkers in Creutzfeldt-Jakob disease: diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and Aβ42 levels , 2017, Acta Neuropathologica.

[26]  L. Sacchetto,et al.  Diagnosis of Human Prion Disease Using Real-Time Quaking-Induced Conversion Testing of Olfactory Mucosa and Cerebrospinal Fluid Samples , 2017, JAMA neurology.

[27]  B. Caughey,et al.  Diagnostic and prognostic value of human prion detection in cerebrospinal fluid , 2017, Annals of neurology.

[28]  B. Caughey,et al.  Extended and direct evaluation of RT‐QuIC assays for Creutzfeldt‐Jakob disease diagnosis , 2016, Annals of clinical and translational neurology.

[29]  T. Asano,et al.  An autopsy-verified case of FTLD-TDP type A with upper motor neuron-predominant motor neuron disease mimicking MM2-thalamic-type sporadic Creutzfeldt-Jakob disease , 2016, Prion.

[30]  B. Caughey,et al.  The real-time quaking-induced conversion assay for detection of human prion disease and study of other protein misfolding diseases , 2016, Nature Protocols.

[31]  A. Karch,et al.  Validation of 14-3-3 Protein as a Marker in Sporadic Creutzfeldt-Jakob Disease Diagnostic , 2016, Molecular Neurobiology.

[32]  A. Karch,et al.  Stability and Reproducibility Underscore Utility of RT-QuIC for Diagnosis of Creutzfeldt-Jakob Disease , 2015, Molecular Neurobiology.

[33]  B. Caughey,et al.  Rapid and Sensitive RT-QuIC Detection of Human Creutzfeldt-Jakob Disease Using Cerebrospinal Fluid , 2015, mBio.

[34]  V. Lal,et al.  A test for Creutzfeldt-Jakob disease using nasal brushings. , 2014, The New England journal of medicine.

[35]  A. Karch,et al.  Characteristic CSF Prion Seeding Efficiency in Humans with Prion Diseases , 2014, Molecular Neurobiology.

[36]  W. Schulz-Schaeffer,et al.  Filtration of protein aggregates increases the accuracy for diagnosing prion diseases in brain biopsies. , 2013, Journal of neuropathology and experimental neurology.

[37]  Mary Andrews,et al.  Real time quaking‐induced conversion analysis of cerebrospinal fluid in sporadic Creutzfeldt–Jakob disease , 2012, Annals of neurology.

[38]  I. Ferrer,et al.  Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA , 2012, Acta Neuropathologica.

[39]  Steven J Collins,et al.  Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion , 2011, Nature Medicine.

[40]  C. Begue,et al.  Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease , 2009, Brain : a journal of neurology.

[41]  U. Heinemann,et al.  Total prion protein levels in the cerebrospinal fluid are reduced in patients with various neurological disorders. , 2009, Journal of Alzheimer's disease : JAD.

[42]  A. Aguzzi,et al.  Mortality from Creutzfeldt–Jakob disease and related disorders in Europe, Australia, and Canada , 2005, Neurology.

[43]  R. Castellani,et al.  Sensitivity of 14-3-3 protein test varies in subtypes of sporadic Creutzfeldt-Jakob disease , 2004, Neurology.

[44]  B. Permanne,et al.  Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding , 2001, Nature.

[45]  A. Alpérovitch,et al.  Diagnosis of Creutzfeldt-Jakob disease , 2000, Neurology.

[46]  P Brown,et al.  Classification of sporadic Creutzfeldt‐Jakob disease based on molecular and phenotypic analysis of 300 subjects , 1999, Annals of neurology.

[47]  Stanley B. Prusiner,et al.  Nobel Lecture: Prions , 1998 .

[48]  O. Gefeller,et al.  Detection of 14‐3‐3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt‐Jakob disease , 1998, Annals of neurology.

[49]  P. Brown,et al.  Human spongiform encephalopathy: The national institutes of health series of 300 cases of experimentally transmitted disease , 1994, Annals of neurology.

[50]  Jonathan O. Harris,et al.  Creutzfeldt‐Jakob disease: Patterns of worldwide occurrence and the significance of familial and sporadic clustering , 1979, Annals of neurology.