Matrix Representations of Fuzzy Quaternion Numbers

In this paper, firstly we discuss basic arithmetic operations with fuzzy quaternion numbers. Then, we introduce a noncommutative field, formed with 2 × 2 fuzzy complex matrices which is used for the matrix representation of fuzzy quaternion numbers as elements within this field. Finally, another way of representing fuzzy quaternion numbers is obtained by using 4 × 4 fuzzy real matrices.

[1]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[2]  C. Felbin,et al.  Finite dimensional fuzzy normed linear space , 1992 .

[3]  Sudarsan Nanda,et al.  On fuzzy metric spaces , 1998, Fuzzy Sets Syst..

[4]  W. Hamilton ON QUATERNIONS By , 1999 .

[5]  Jianzhong Xiao,et al.  On linearly topological structure and property of fuzzy normed linear space , 2002, Fuzzy Sets Syst..

[6]  Michael Hanss,et al.  Applied Fuzzy Arithmetic: An Introduction with Engineering Applications , 2004 .

[7]  Tien-Chin Wang,et al.  Using the fuzzy multi-criteria decision making approach for measuring the possibility of successful knowledge management , 2009, Inf. Sci..

[8]  H. Baghani,et al.  ON FELBIN’S-TYPE FUZZY NORMED LINEAR SPACES AND FUZZY BOUNDED OPERATORS , 2011 .

[9]  Qiang Shen,et al.  Fuzzy complex numbers and their application for classifiers performance evaluation , 2011, Pattern Recognit..

[10]  Hesham A. Hefny,et al.  An extension of fuzzy decision maps for multi-criteria decision-making , 2013 .

[11]  Benjamín R. C. Bedregal,et al.  Fuzzy quaternion numbers , 2013, 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[12]  Benjamín R. C. Bedregal,et al.  Rotation of triangular fuzzy numbers via quaternion , 2014, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[13]  Ioan Dzitac,et al.  The Fuzzification of Classical Structures: A General View , 2015, Int. J. Comput. Commun. Control.

[14]  Sorin Nadaban,et al.  Fuzzy TOPSIS: A General View , 2016 .