Generative probabilistic models for multimedia retrieval: query generation against document generation

This paper presents the use of generative probabilistic models for multimedia retrieval. Gaussian mixture models are estimated to describe the visual content of images (or video) and are explored in different ways of using them for retrieval. So-called query generation (how likely is the query given the document model) and document generation (how likely is the document given the query model) approaches are considered and how both fit in a common probabilistic framework is explained. Query generation is shown to be theoretically superior, and confirmed experimentally on the Trecvid search task. However, it is found that in some cases a document generation approach gives better results. Especially in the cases where queries are narrow and visual results are combined with textual results, the document generation approach seems to be better at setting a visual context than the query generation variant.

[1]  Thijs Westerveld,et al.  Using generative probabilistic models for multimedia retrieval , 2005, SIGF.

[2]  Gerard Salton,et al.  Research and Development in Information Retrieval , 1982, Lecture Notes in Computer Science.

[3]  John D. Lafferty,et al.  A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.

[4]  Djoerd Hiemstra,et al.  A Probabilistic Multimedia Retrieval Model and Its Evaluation , 2003, EURASIP J. Adv. Signal Process..

[5]  Hayit Greenspan,et al.  A Continuous Probabilistic Framework for Image Matching , 2001, Comput. Vis. Image Underst..

[6]  Thijs Westerveld,et al.  Experimental result analysis for a generative probabilistic image retrieval model , 2003, SIGIR.

[7]  Jean-Luc Gauvain,et al.  The LIMSI Broadcast News transcription system , 2002, Speech Commun..

[8]  Thijs Westerveld,et al.  Multimedia Retrieval Using Multiple Examples , 2004, CIVR.

[9]  Hayit Greenspan,et al.  Probabilistic space-time video modeling via piecewise GMM , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Djoerd Hiemstra,et al.  The Importance of Prior Probabilities for Entry Page Search , 2002, SIGIR '02.

[11]  Djoerd Hiemstra,et al.  A Linguistically Motivated Probabilistic Model of Information Retrieval , 1998, ECDL.

[12]  Jianping Fan,et al.  Semantic principal video shot classification via mixture Gaussian , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[13]  Nuno Vasconcelos,et al.  Bayesian models for visual information retrieval , 2000 .

[14]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[15]  M. E. Maron,et al.  On Relevance, Probabilistic Indexing and Information Retrieval , 1960, JACM.

[16]  Michael I. Jordan,et al.  Modeling annotated data , 2003, SIGIR.

[17]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[18]  Frederick Jelinek,et al.  Interpolated estimation of Markov source parameters from sparse data , 1980 .

[19]  Thijs Westerveld,et al.  A dynamic probabilistic multimedia retrieval model , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[20]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 2 , 2000, Inf. Process. Manag..

[21]  Hayit Greenspan,et al.  A Probabilistic Framework for Spatio-Temporal Video Representation & Indexing , 2002, ECCV.

[22]  Andrew B. Lippman,et al.  Embedded mixture modeling for efficient probabilistic content-based indexing and retrieval , 1998, Other Conferences.

[23]  T. Ianeva,et al.  A dynamic probabilistic retrieval model , 2004 .

[24]  Susan T. Dumais,et al.  Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval , 2004, SIGIR 2004.

[25]  ChengXiang Zhai,et al.  Probabilistic Relevance Models Based on Document and Query Generation , 2003 .

[26]  R. Manmatha,et al.  Automatic image annotation and retrieval using cross-media relevance models , 2003, SIGIR.