Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method

Abstract Cu doped ZnO (Zn 1− x Cu x O, x  = 0, 0.02, 0.04 and 0.06) nanopowders have been synthesized by co-precipitation method and annealed at 500 °C for 2 h under Ar atmosphere. The synthesized samples have been characterized by powder X-ray diffraction, energy-dispersive analysis X-ray (EDAX) spectra, UV–Visible spectrophotometer and Fourier transform infrared (FTIR) spectroscopy. The XRD measurement reveals that the prepared nanoparticles have different microstructure without changing a hexagonal wurtzite structure. The calculated average crystalline size decreases from 22.24 to 15.93 nm for x  = 0 to 0.04 then reaches 26.54 nm for x  = 0.06 which is confirmed by SEM micrographs. The change in lattice parameters, micro-strain, a small shift and broadening in XRD peaks and the reduction in the energy gap from 3.49 to 3.43 eV reveals the substitution of Cu 2+ ions into the ZnO lattice. Hydrogenation effect improves the crystal quality and optical properties. It is proposed that Cu doping concentration limit is below 6% (0.06) molar fraction which is supported by the detailed XRD analysis and the derived structural parameters. This Cu concentration limit was proposed as below 5% by previous studies. The presence of functional groups and the chemical bonding is confirmed by FTIR spectra. PL spectra of the Zn 1− x Cu x O system show that the shift in near band edge (NBE) UV emission from 398 to 403 nm and a shift in green band (GB) emission from 527 to 522 nm which confirms the substitution of Cu into the ZnO lattice.

[1]  Y. Wang,et al.  Electrical properties of Na/Mg co-doped ZnO thin films , 2007 .

[2]  C. Karunakaran,et al.  Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide , 2010 .

[3]  T. Barth Optical properties of mixed crystals , 1930 .

[4]  J. Tedenac,et al.  Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature , 2008 .

[5]  I. Hamberg,et al.  Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows , 1986 .

[6]  H. T. Chen,et al.  Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives , 2004 .

[7]  X. Shang,et al.  Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO:Cu films , 2011 .

[8]  Wei Jiang,et al.  Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition , 2003 .

[9]  H. Makino,et al.  Effects of substrate temperature on crystallinity and electrical properties of Ga-doped ZnO films prepared on glass substrate by ion-plating method using DC arc discharge , 2007 .

[10]  S. Lau,et al.  Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles , 2007 .

[11]  Parmanand Sharma,et al.  Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering , 2003 .

[12]  H. Harima Raman studies on spintronics materials based on wide bandgap semiconductors , 2004 .

[13]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[14]  Ilaria Ciofini,et al.  Wavelength‐Emission Tuning of ZnO Nanowire‐Based Light‐Emitting Diodes by Cu Doping: Experimental and Computational Insights , 2011 .

[15]  J. Ding,et al.  Cu-Doped ZnO Nanoneedles and Nanonails : Morphological Evolution and Physical Properties , 2008 .

[16]  Sang Yeol Lee,et al.  Fabrication of ZnO thin film diode using laser annealing , 2005 .

[17]  J. Lascaray,et al.  Effect of the magnetic order on the optical-absorption edge in Cd1-xMnxTe. , 1985, Physical review. B, Condensed matter.

[18]  Jijun Ding,et al.  Effect of substrate and annealing on the structural and optical properties of ZnO:Al films , 2010 .

[19]  H. Nagabhushana,et al.  Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis , 2011 .

[20]  B. Sahraoui,et al.  Influence of Ag, Cu dopants on the second and third harmonic response of ZnO films , 2009 .

[21]  S. Monticone,et al.  Complex Nature of the UV and Visible Fluorescence of Colloidal ZnO Nanoparticles. , 1998, The journal of physical chemistry. B.

[22]  Bixia Lin,et al.  Green luminescent center in undoped zinc oxide films deposited on silicon substrates , 2001 .

[23]  Bruce E. Gnade,et al.  Mechanisms behind green photoluminescence in ZnO phosphor powders , 1996 .

[24]  L. A. Patil,et al.  Surface cupricated SnO2-ZnO thick films as a H2S gas sensor , 2004 .

[25]  C. Schlegel,et al.  Vertical nanowire light-emitting diode , 2004 .

[26]  Qiang Fu,et al.  Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures , 2006 .

[27]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .

[28]  Kuei-Hsien Chen,et al.  Structural and optical properties of single crystal Zn1-xMgxO nanorods - Experimental and theoretical studies , 2007 .

[29]  Heon-Jin Choi,et al.  Single-crystal gallium nitride nanotubes , 2003, Nature.

[30]  Zhifeng Ren,et al.  ZnO nanobridges and nanonails , 2003 .

[31]  P. P. Hankare,et al.  Effect of thermal annealing on properties of zinc selenide thin films deposited by chemical bath deposition , 2009 .

[32]  Haixia Chen,et al.  Microstructures and optical properties of Cu-doped ZnO films prepared by radio frequency reactive magnetron sputtering , 2011 .

[33]  Shui-Tong Lee,et al.  Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers , 2002 .

[34]  M. Salavati‐Niasari,et al.  Nanosphericals and nanobundles of ZnO: Synthesis and characterization , 2011 .

[35]  H. Yan,et al.  Morphogenesis of One‐Dimensional ZnO Nano‐ and Microcrystals , 2003 .

[36]  Michael N. R. Ashfold,et al.  Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth , 2006 .

[37]  Prashant K. Sharma,et al.  Doping dependent room-temperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO:Cu2+ nanorods , 2009 .

[38]  Becker,et al.  Dependence of energy gap on x and T in Zn1-xMnxSe: The role of exchange interaction. , 1986, Physical review. B, Condensed matter.

[39]  F. Zeng,et al.  Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering , 2007 .

[40]  J. Pelleg,et al.  Stress changes in chemical vapor deposition tungsten silicide (polycide) film measured by x-ray diffraction , 2002 .

[41]  R. Ahuja,et al.  Magnetism and band gap narrowing in Cu-doped ZnO , 2009 .

[42]  Bruno Viana,et al.  Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications , 2011 .

[43]  B. Delley,et al.  Half-metallic ferromagnetism in Cu-doped ZnO: Density functional calculations , 2006 .

[44]  E. Suh,et al.  Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation , 2006, Nanotechnology.

[45]  R. Elilarassi,et al.  Structural, optical and magnetic characterization of Cu-doped ZnO nanoparticles synthesized using solid state reaction method , 2010 .

[46]  M. Rao,et al.  Optical and electrical resistivity studies of isovalent and aliovalent3dtransition metal ion doped ZnO , 2009 .

[47]  No ferromagnetism in Mn doped ZnO semiconductors , 2005 .

[48]  Z. Xie,et al.  The structure and magnetic properties of Cu-doped ZnO prepared by sol–gel method , 2010 .

[49]  J. Narayan,et al.  Room temperature ferromagnetism in Zn1−xCuxO thin films , 2007 .

[50]  S. Lau,et al.  Ferromagnetic Cu doped ZnO as an electron injector in heterojunction light emitting diodes , 2008 .

[51]  E. Fortunato,et al.  New insights on large area flexible position sensitive detectors , 2002 .

[52]  A. Morsali,et al.  Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4. , 2009, Ultrasonics sonochemistry.

[53]  Yongjun Zhang,et al.  A study of structural, optical and magnetic properties of Zn0.97-xCuxCr0.03O diluted magnetic semiconductors , 2011 .

[54]  Jinzhang Xu,et al.  Structural and PL properties of Cu-doped ZnO films , 2008 .

[55]  Parmanand Sharma,et al.  First principles based design and experimental evidence for a ZnO-based ferromagnet at room temperature. , 2005, Physical review letters.

[56]  E. Longo,et al.  The effect of cooling rate during hydrothermal synthesis of ZnO nanorods , 2009 .

[57]  Klein,et al.  Spectroscopic ellipsometry study of the diluted magnetic semiconductor system Zn(Mn,Fe,Co)Se. , 1994, Physical review. B, Condensed matter.

[58]  S. Singhal,et al.  Cu-doped ZnO nanoparticles: Synthesis, structural and electrical properties , 2012 .

[59]  Sangam Banerjee,et al.  Influence of Mn doping on the microstructure and optical property of ZnO , 2007 .

[60]  Ahmad Umar,et al.  Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties , 2007 .

[61]  Xiaoyang Liu,et al.  Effects of Cr-doping on the optical and magnetic properties in ZnO nanoparticles prepared by sol-gel method , 2009 .

[62]  Prashant K. Sharma,et al.  Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs , 2011, Journal of Nanoparticle Research.

[63]  R. Aiyer,et al.  Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles , 2008 .