An indirect Lyapunov approach to the observer-based robust control for fractional-order complex dynamic networks

Abstract This paper concerns with the problem of the observer-based robust control for a class of fractional-order complex dynamic networks. First, by introducing a continuous frequency distributed equivalent model and using indirect Lyapunov approach, the sufficient condition for robust asymptotic stability of the closed-loop systems via state observer-based control is presented. Next, using matrix׳s singular value decomposition (SVD) and linear matrix inequality (LMI) techniques, the existence condition and method of designing a robust non-fragile observer-based controller are derived. Finally, the validity of the proposed methods are demonstrated by a numerical example.

[1]  Haijun Jiang,et al.  Α-stability and Α-synchronization for Fractional-order Neural Networks , 2012, Neural Networks.

[2]  Tiedong Ma,et al.  Dynamic analysis of a class of fractional-order neural networks with delay , 2013, Neurocomputing.

[3]  Eva Kaslik,et al.  Nonlinear dynamics and chaos in fractional-order neural networks , 2012, Neural Networks.

[4]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order $\alpha$: The $0≪\alpha≪1$ Case , 2010, IEEE Transactions on Automatic Control.

[5]  Song Zheng,et al.  Impulsive synchronization of complex networks with non-delayed and delayed coupling , 2009 .

[6]  Alain Oustaloup,et al.  A Lyapunov approach to the stability of fractional differential equations , 2009, Signal Process..

[7]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[8]  Degang Xu,et al.  Synchronization criterions and pinning control of general complex networks with time delay , 2009, Appl. Math. Comput..

[9]  Christophe Farges,et al.  On Observability and Pseudo State Estimation of Fractional Order Systems , 2012, Eur. J. Control.

[10]  A. Fairhall,et al.  Fractional differentiation by neocortical pyramidal neurons , 2008, Nature Neuroscience.

[11]  Liang Chen,et al.  Adaptive synchronization between two complex networks with nonidentical topological structures , 2008 .

[12]  Maamar Bettayeb,et al.  A NOTE ON THE CONTROLLABILITY AND THE OBSERVABILITY OF FRACTIONAL DYNAMICAL SYSTEMS , 2006 .

[13]  W. K. Wong,et al.  Robust synchronization of fractional-order complex dynamical networks with parametric uncertainties , 2012 .

[14]  Mohammad Mostafa Asheghan,et al.  Synchronization of N-coupled incommensurate fractional-order chaotic systems with ring connection , 2011 .

[15]  Yangquan Chen,et al.  Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality , 2007, Appl. Math. Comput..

[16]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[17]  Lihua Xie,et al.  Output feedback H∞ control of systems with parameter uncertainty , 1996 .

[18]  C. C. Macduffee,et al.  The Theory of Matrices , 1933 .

[19]  YangQuan Chen,et al.  Fractional order robust control for cogging effect compensation in PMSM position servo systems: Stability analysis and experiments , 2010 .

[20]  André R. Fioravanti,et al.  PID controller design for fractional-order systems with time delays , 2012, Syst. Control. Lett..

[21]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[22]  Guo-Ping Jiang,et al.  A State-Observer-Based Approach for Synchronization in Complex Dynamical Networks , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[24]  P LazarevićMihailo,et al.  Finite-time stability analysis of fractional order time-delay systems , 2009 .

[25]  Tiedong Ma,et al.  Cluster synchronization in fractional-order complex dynamical networks , 2012 .

[26]  Chen Guan-Rong,et al.  Cost and Effects of Pinning Control for Network Synchronization , 2007, ArXiv.

[27]  Yi Chai,et al.  Adaptive pinning synchronization in fractional-order complex dynamical networks , 2012 .

[28]  Aleksandar M. Spasic,et al.  Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach , 2009, Math. Comput. Model..

[29]  M. P. Aghababa Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller , 2012 .

[30]  Nan Li,et al.  Synchronization for general complex dynamical networks with sampled-data , 2011, Neurocomputing.

[31]  Ju H. Park,et al.  Adaptive lag synchronization for uncertain complex dynamical network with delayed coupling , 2012, Appl. Math. Comput..

[32]  Yong-Hong Lan,et al.  Observer-based robust control of a (1⩽ a ≪ 2) fractional-order uncertain systems: a linear matrix inequality approach , 2012 .

[33]  Wansheng Tang,et al.  Robust H∞ output feedback control for uncertain complex delayed dynamical networks , 2011, Comput. Math. Appl..

[34]  Ran Zhang,et al.  Dynamics analysis of fractional order three-dimensional Hopfield neural network , 2010, 2010 Sixth International Conference on Natural Computation.

[35]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[36]  Hamid Reza Momeni,et al.  Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems , 2012, Signal Process..

[37]  Ju H. Park,et al.  Guaranteed cost synchronization of a complex dynamical network via dynamic feedback control , 2012, Appl. Math. Comput..

[38]  I. Podlubny Fractional differential equations , 1998 .

[39]  Hongjie Li,et al.  Observer-Type Consensus Protocol for a Class of Fractional-Order Uncertain Multiagent Systems , 2012 .

[40]  Carroll Guillory Douglas algebras without maximal subalgebra and without minimal superalgebra , 2001 .

[41]  Jun-Guo Lu,et al.  Stability Analysis of a Class of Nonlinear Fractional-Order Systems , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[42]  YangQuan Chen,et al.  Linear Feedback Control: Analysis and Design with MATLAB , 2008 .