Dynamics of quantum entanglement

A model of discrete dynamics of entanglement of a bipartite quantum state is considered. It involves a global unitary dynamics of the system and periodic actions of local bistochastic or decaying channel. For initially pure states the decay of entanglement is accompanied by an increase of von Neumann entropy of the system. We observe and discuss revivals of entanglement due to unitary interaction of subsystems. For some mixed states having different marginal entropies of the subsystems we find an asymmetry in speed of entanglement decay. The entanglement of these states decreases faster, if the depolarizing channel acts on the ‘‘classical’’ subsystem, characterized by smaller marginal entropy.