Vertical GaN Nanowires and Nanoscale Light-Emitting-Diode Arrays for Lighting and Sensing Applications

For various lighting and monolithic sensor systems application, vertically aligned three-dimensional (3D) gallium nitride (GaN)- and indium gallium nitride (InGaN)/GaN-based LED nanowire arrays with sub-200 nm feature sizes (down to 35 nm) were fabricated using a nanosphere lift-off lithography (NSLL) technique combined with hybrid top-down etching (i.e., inductively coupled plasma dry reactive ion etching (ICP-DRIE) and wet chemical etching). Owing to the lithographic opening and well-controlled surface functionalization prior to the polystyrene nanosphere (PN) deposition, vertical GaN nanowire arrays with an area density of 9.74 × 108 cm–2 and an aspect ratio of >10 could be realized in a specified large area of 1.5 × 1.5 mm2. Optoelectrical characteristics of the nanoLEDs were further investigated in cathodoluminescence (CL) measurements, in which multiquantum well (MQW) shows a clear CL-emission at a wavelength of 465 nm. Thus, using NSLL to manufacture low-cost but highly ordered 3D GaN-based nanowir...

[1]  Yingmin Luo,et al.  A preliminary study of SF6 based inductively coupled plasma etching techniques for beta gallium trioxide thin film , 2015 .

[2]  A. Waag,et al.  Vertical silicon nanowire array-patterned microcantilever resonators for enhanced detection of cigarette smoke aerosols , 2014 .

[3]  Wen Li,et al.  GaN LEDs fabricated using SF 6 plasma RIE , 2018, Micro & Nano Letters.

[4]  C. Prinz,et al.  Interactions between semiconductor nanowires and living cells , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  D. S. Rawal,et al.  GaN nanostructures by reactive ion etching: Mask and Maskless approach , 2019, Nano-Structures & Nano-Objects.

[6]  Hutomo Suryo Wasisto,et al.  Towards fabrication of 3D isotopically modulated vertical silicon nanowires in selective areas by nanosphere lithography , 2017 .

[7]  A. Waag,et al.  GaN nanowire arrays with nonpolar sidewalls for vertically integrated field-effect transistors , 2017, Nanotechnology.

[8]  Tilman Schimpke,et al.  Vertical architecture for enhancement mode power transistors based on GaN nanowires , 2016 .

[9]  François Templier,et al.  Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: A size effect study , 2017 .

[10]  Fouad Karouta,et al.  A practical approach to reactive ion etching , 2014 .

[11]  S. Pearton,et al.  III‐Nitride Nanowires as Building Blocks for Advanced Light Emitting Diodes , 2019, physica status solidi (b).

[12]  H. Kuo,et al.  Wet mesa etching process in InGaN-based light emitting diodes , 2008 .

[13]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[14]  A. Waag,et al.  Continuous-Flow MOVPE of Ga-Polar GaN Column Arrays and Core–Shell LED Structures , 2013 .

[15]  T. Sekiguchi,et al.  Origin of yellow-band emission in epitaxially grown GaN nanowire arrays. , 2014, ACS applied materials & interfaces.

[16]  H. Morkoç,et al.  Luminescence properties of defects in GaN , 2005 .

[17]  A. Waag,et al.  3D GaN nanoarchitecture for field-effect transistors , 2019, Micro and Nano Engineering.

[18]  C. Yam,et al.  Bandgap engineering of GaN nanowires , 2016 .

[19]  Z. Hao,et al.  Enhancement of light output power from LEDs based on monolayer colloidal crystal. , 2014, Small.

[20]  A. Waag,et al.  The nanorod approach: GaN NanoLEDs for solid state lighting , 2011 .

[21]  Qian Sun,et al.  Using the kinetic Wulff plot to design and control nonpolar and semipolar GaN heteroepitaxy , 2012 .

[22]  P. Ku,et al.  Site-controlled InGaN/GaN single-photon-emitting diode , 2016, 1602.02325.

[23]  A. Waag,et al.  Traceable Nanomechanical Metrology of GaN Micropillar Array , 2018, Advanced Engineering Materials.

[24]  Sarah Kim,et al.  Nanomachining by colloidal lithography. , 2006, Small.

[25]  D. Morse,et al.  Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching , 2018, Bioinspiration & biomimetics.

[26]  J. Zúñiga-Pérez,et al.  Selective area growth of a- and c-plane GaN nanocolumns by molecular beam epitaxy using colloidal nanolithography , 2012 .

[27]  Angeliki Tserepi,et al.  Mesh-assisted colloidal lithography and plasma etching: A route to large-area, uniform, ordered nano-pillar and nanopost fabrication on versatile substrates , 2011 .

[28]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[29]  H. Morkoç,et al.  Bias-assisted photoelectrochemical etching of p-GaN at 300 K , 2000 .

[30]  A. Waag,et al.  Cleaning of structured templates from nanoparticle accumulation using silicone , 2012 .

[31]  Hutomo Suryo Wasisto,et al.  Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection , 2013 .

[32]  F. Caruso,et al.  Next generation, sequentially assembled ultrathin films: beyond electrostatics. , 2007, Chemical Society reviews.

[33]  A. Waag,et al.  Production of vertical nanowire resonators by cryogenic-ICP–DRIE , 2014 .

[34]  O. Brandt,et al.  Surface-induced effects in GaN nanowires , 2011 .

[35]  R. J. Shul,et al.  GAN : PROCESSING, DEFECTS, AND DEVICES , 1999 .

[36]  M. Pileni,et al.  Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals , 2004, Nature materials.

[37]  N. Dasgupta,et al.  Reactive ion etching of GaN in SF6 + Ar and SF6 + N2 plasma , 2008 .

[38]  Hutomo Suryo Wasisto,et al.  Finite element modeling and experimental proof of NEMS-based silicon pillar resonators for nanoparticle mass sensing applications , 2013, Microsystem Technologies.

[39]  Shui-Tong Lee,et al.  Controllable Synthesis of Vertically Aligned p‐Type GaN Nanorod Arrays on n‐Type Si Substrates for Heterojunction Diodes , 2008 .

[40]  Hutomo Suryo Wasisto,et al.  Nanoindentation of crystalline silicon pillars fabricated by soft UV nanoimprint lithography and cryogenic deep reactive ion etching , 2018, Sensors and Actuators A: Physical.

[41]  R. Cloots,et al.  Experimental design applied to spin coating of 2D colloidal crystal masks: a relevant method? , 2011, Langmuir : the ACS journal of surfaces and colloids.

[42]  M. Xiao,et al.  Layer-by-layer self-assembly of PDDA/PSS-SPFEK composite membrane with low vanadium permeability for vanadium redox flow battery , 2013 .