Development and evaluation of a hydrologic data-assimilation scheme for short-range flow and inflow forecasts in a data-sparse high-latitude region using a distributed model and ensemble Kalman filtering

[1]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[2]  P. Kitanidis,et al.  Real‐time forecasting with a conceptual hydrologic model: 2. Applications and results , 1980 .

[3]  W. Rawls,et al.  Estimation of Soil Water Retention and Hydraulic Properties , 1989 .

[4]  G. Evensen Using the Extended Kalman Filter with a Multilayer Quasi-Geostrophic Ocean Model , 1992 .

[5]  Roman Krzysztofowicz,et al.  Probabilistic Quantitative Precipitation Forecasts for River Basins , 1993, Weather and Forecasting.

[6]  Soroosh Sorooshian,et al.  On the simulation of infiltration‐ and saturation‐excess runoff using radar‐based rainfall estimates: Effects of algorithm uncertainty and pixel aggregation , 1998 .

[7]  Nicholas E. Graham,et al.  Conditional Probabilities, Relative Operating Characteristics, and Relative Operating Levels , 1999 .

[8]  Dong-Jun Seo,et al.  Scale dependencies of hydrologic models to spatial variability of precipitation , 1999 .

[9]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[10]  L. Hay,et al.  A COMPARISON OF DELTA CHANGE AND DOWNSCALED GCM SCENARIOS FOR THREE MOUNTAINOUS BASINS IN THE UNITED STATES 1 , 2000 .

[11]  Jean-Pierre Villeneuve,et al.  DISTRIBUTED WATERSHED MODEL COMPATIBLE WITH REMOTE SENSING AND GIS DATA .I : D ESCRIPTION OF MODEL , 2001 .

[12]  Serge Massicotte,et al.  Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network , 2001 .

[13]  K. Georgakakos,et al.  On the parametric and NEXRAD-radar sensitivities of a distributed hydrologic model suitable for operational use , 2001 .

[14]  André Revil,et al.  Principles of electrography applied to self‐potential electrokinetic sources and hydrogeological applications , 2003 .

[15]  S. Liang Quantitative Remote Sensing of Land Surfaces , 2003 .

[16]  Dong-Jun Seo,et al.  Real-Time Variational Assimilation of Hydrologic and Hydrometeorological Data into Operational Hydrologic Forecasting , 2003 .

[17]  M. Franchini,et al.  Path‐based methods for the determination of nondispersive drainage directions in grid‐based digital elevation models , 2003 .

[18]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[19]  Jean-Pierre Villeneuve,et al.  Prévision hydrologique distribuée pour la gestion des barrages publics du Québec , 2004 .

[20]  Soroosh Sorooshian,et al.  Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .

[21]  Emmanuel Roulin,et al.  Skill of Medium-Range Hydrological Ensemble Predictions , 2005 .

[22]  Kuolin Hsu,et al.  Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter , 2005 .

[23]  M. Clark,et al.  Probabilistic Quantitative Precipitation Estimation in Complex Terrain , 2005 .

[24]  C. Diks,et al.  Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .

[25]  A. Weerts,et al.  Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall‐runoff models , 2006 .

[26]  Ezio Todini,et al.  The use of meteorological analogues to account for LAM QPF uncertainty , 2006 .

[27]  D. Lettenmaier,et al.  Assimilating remotely sensed snow observations into a macroscale hydrology model , 2006 .

[28]  Gabrielle De Lannoy,et al.  Improvement of modeled soil wetness conditions and turbulent fluxes through the assimilation of observed discharge , 2006 .

[29]  Mark A. Liniger,et al.  The discrete brier and ranked probability skill scores , 2007 .

[30]  Jeffrey G. Arnold,et al.  Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations , 2007 .

[31]  Yuqiong Liu,et al.  Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework , 2007 .

[32]  W. Deursen,et al.  Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach , 2007 .

[33]  Paul R. Houser,et al.  Scanning multichannel microwave radiometer snow water equivalent assimilation , 2007 .

[34]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[35]  R. Ibbitt,et al.  Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model , 2007 .

[36]  M. Woo,et al.  Hydrology of the Northwestern Subarctic Canadian Shield , 2008 .

[37]  R. Reichle Data assimilation methods in the Earth sciences , 2008 .

[38]  Guillem Candille,et al.  The Multiensemble Approach: The NAEFS Example , 2009 .

[39]  E. Sprokkereef,et al.  Verification of ensemble flow forecasts for the River Rhine , 2009 .

[40]  J. Olsson,et al.  Applying climate model precipitation scenarios for urban hydrological assessment: a case study in Kalmar City, Sweden. , 2009 .

[41]  Sylvain Massuel,et al.  Conditional simulation schemes of rain fields and their application to rainfall-runoff modeling studies in the Sahel , 2009 .

[42]  L. Feyen,et al.  Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter , 2009 .

[43]  T. Brabets,et al.  Trends in streamflow in the Yukon River Basin from 1944 to 2005 and the influence of the Pacific Decadal Oscillation. , 2009 .

[44]  Peter J. Webster,et al.  A 1–10-Day Ensemble Forecasting Scheme for the Major River Basins of Bangladesh: Forecasting Severe Floods of 2003–07* , 2010 .

[45]  George Kuczera,et al.  Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors , 2010 .

[46]  Velázquez Zapata,et al.  Evaluation of hydrological ensemble prediction systems for operational forecasting , 2010 .

[47]  Herman Gerritsen,et al.  Application of generic data assimilation tools (DATools) for flood forecasting purposes , 2010, Comput. Geosci..

[48]  H. Moradkhani,et al.  Probabilistic Assessment of the Satellite Rainfall Retrieval Error Translation to Hydrologic Response , 2010 .

[49]  T. Gan,et al.  Incorporation of seasonal climate forecasts in the ensemble streamflow prediction system. , 2010 .

[50]  M. Gebremichael,et al.  Satellite rainfall applications for surface hydrology , 2010 .

[51]  C. M. DeChant,et al.  Improving the characterization of initial condition for ensemble streamflow prediction using data assimilation , 2011 .

[52]  Victor Koren,et al.  Assimilation of streamflow and in situ soil moisture data into operational distributed hydrologic models: Effects of uncertainties in the data and initial model soil moisture states , 2011 .

[53]  Michael Durand,et al.  Assimilation of virtual wide swath altimetry to improve Arctic river modeling , 2011 .

[54]  George Kuczera,et al.  Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation , 2011 .

[55]  H. Moradkhani,et al.  Snow water equivalent prediction using Bayesian data assimilation methods , 2011 .

[56]  C. M. DeChant,et al.  Radiance data assimilation for operational snow and streamflow forecasting , 2011 .

[57]  H. Gupta,et al.  Correcting the mathematical structure of a hydrological model via Bayesian data assimilation , 2011 .

[58]  P. Coulibaly,et al.  Estimation of Continuous Streamflow in Ontario Ungauged Basins: Comparison of Regionalization Methods , 2011 .

[59]  Jacques Sau,et al.  Data assimilation for real-time estimation of hydraulic states and unmeasured perturbations in a 1D hydrodynamic model , 2009, Math. Comput. Simul..

[60]  Soroosh Sorooshian,et al.  Evolution of ensemble data assimilation for uncertainty quantification using the particle filter‐Markov chain Monte Carlo method , 2012 .

[61]  P. Coulibaly,et al.  Evaluation of future flow variability in ungauged basins: Validation of combined methods , 2012 .

[62]  Hamid Moradkhani,et al.  Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting , 2012 .

[63]  Oldrich Rakovec,et al.  State updating of a distributed hydrological model with Ensemble Kalman Filtering: Effects of updating frequency and observation network density on forecast accuracy , 2012 .

[64]  Hamid Moradkhani,et al.  Toward reduction of model uncertainty: Integration of Bayesian model averaging and data assimilation , 2012 .

[65]  Jasper A. Vrugt,et al.  Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications (online first) , 2012 .

[66]  Oldrich Rakovec,et al.  Generating spatial precipitation ensembles: impact of temporal correlation structure , 2012 .

[67]  Seong Jin Noh,et al.  Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities , 2012 .

[68]  Gift Dumedah,et al.  Assessing model state and forecasts variation in hydrologic data assimilation , 2014 .

[69]  M. Walter,et al.  Do Energy‐Based PET Models Require More Input Data than Temperature‐Based Models? — An Evaluation at Four Humid FluxNet Sites , 2014 .

[70]  Olle Räty,et al.  Evaluation of delta change and bias correction methods for future daily precipitation: intermodel cross-validation using ENSEMBLES simulations , 2014, Climate Dynamics.

[71]  Gilles Belaud,et al.  SWOT data assimilation for operational reservoir management on the upper Niger River Basin , 2014 .

[72]  Philippe Cantet,et al.  Mapping the mean monthly precipitation of a small island using kriging with external drifts , 2015, Theoretical and Applied Climatology.

[73]  Peter Steen Mikkelsen,et al.  Comparison of two stochastic techniques for reliable urban runoff prediction by modeling systematic errors , 2015 .

[74]  David Mocko,et al.  Role of forcing uncertainty and model error background characterization in snow data assimilation , 2016 .

[75]  François Anctil,et al.  Hydrological Evaluation of the Canadian Meteorological Ensemble Reforecast Product , 2017 .

[76]  P. Burlando,et al.  Time-varying parameter models for catchments with land use change: the importance of model structure , 2017 .

[77]  Peyman Abbaszadeh,et al.  Enhancing hydrologic data assimilation by evolutionary Particle Filter and Markov Chain Monte Carlo , 2018 .

[78]  Peyman Abbaszadeh,et al.  Fundamentals of Data Assimilation and Theoretical Advances , 2018 .

[79]  A. Rousseau,et al.  Equifinality and automatic calibration: What is the impact of hypothesizing an optimal parameter set on modelled hydrological processes? , 2018 .

[80]  N. Hedstrom,et al.  Hydrometeorological data from Baker Creek Research Watershed, Northwest Territories, Canada , 2018, Earth System Science Data.

[81]  A. Rousseau,et al.  Synchronized generation of high-resolution gridded precipitation and temperature fields , 2019, Journal of Hydrology.

[82]  Zahra Zahmatkesh,et al.  Hydrological assessment of meteorological network density through data assimilation simulation , 2019, Journal of Hydrology.

[83]  Juliane Mai,et al.  Efficient treatment of climate data uncertainty in ensemble Kalman filter (EnKF) based on an existing historical climate ensemble dataset , 2019, Journal of Hydrology.