Photoelectric Detection and Quantum Readout of Nitrogen‐Vacancy Center Spin States in Diamond

A novel method for reading out the electron spin state of the negatively charged nitrogen‐vacancy (NV) point defect in diamond, based on photoelectric detection of NV magnetic resonances (PDMR), is reviewed. As a convenient way to measure the spin state of qubits, the presented technique is anticipated to lead to a vast range of applications in the field of quantum technologies. It has been demonstrated that this method can be used both in continuous‐wave mode and for the pulse readout of coherently manipulated NV− spins. The PDMR technique presents interesting advantages over the commonly used optical detection of magnetic resonances (ODMR) and was recently downscaled to the reading out of a single NV− spin qubit. The principles, current developments, advantages, and drawbacks of PDMR are presented in this progress report. A complete to‐date methodology of NV photoelectric readout is described and PDMR is compared to ODMR. Future developments and possible improvements of the technique are mentioned. The results of the latest studies, aiming at overcoming limitations in the PDMR contrast through a better understanding of NV photo‐physics and of charge exchanges between NV centers and other electrically active defects, are discussed.

[1]  S. Yamasaki,et al.  Room Temperature Electrically Detected Nuclear Spin Coherence of NV Centres in Diamond , 2018, Scientific Reports.

[2]  S. Pezzagna,et al.  Coulomb-driven single defect engineering for scalable qubits and spin sensors in diamond , 2019, Nature Communications.

[3]  Á. Gali Ab initio theory of the nitrogen-vacancy center in diamond , 2019, Nanophotonics.

[4]  L. Hollenberg,et al.  Microscopic Imaging of the Stress Tensor in Diamond Using in Situ Quantum Sensors. , 2018, Nano letters.

[5]  N. T. Son,et al.  Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions , 2019, Nature Communications.

[6]  F. Jelezko,et al.  Compact integrated magnetometer based on nitrogen-vacancy centres in diamond , 2019, Diamond and Related Materials.

[7]  F. Jelezko,et al.  Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond , 2019, Science.

[8]  D. Bluvstein,et al.  Identifying and Mitigating Charge Instabilities in Shallow Diamond Nitrogen-Vacancy Centers. , 2018, Physical review letters.

[9]  R. Ulbricht,et al.  Excited-state lifetime of the NV− infrared transition in diamond , 2018, Physical Review B.

[10]  Myeongwon Lee,et al.  Precise temperature sensing with nanoscale thermal sensors based on diamond NV centers , 2018, Current Applied Physics.

[11]  David A. Hopper,et al.  Spin Readout Techniques of the Nitrogen-Vacancy Center in Diamond , 2018, Micromachines.

[12]  Ronald Hanson,et al.  Quantum technologies with optically interfaced solid-state spins , 2018, Nature Photonics.

[13]  T. Ohshima,et al.  NV−–N+ pair centre in 1b diamond , 2018, New Journal of Physics.

[14]  L. Childress,et al.  Charge-state dynamics during excitation and depletion of the nitrogen-vacancy center in diamond , 2018, Physical Review A.

[15]  Á. Gali,et al.  Identification of nickel-vacancy defects by combining experimental and ab initio simulated photocurrent spectra , 2018, Physical Review B.

[16]  S. Dhomkar,et al.  Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond. , 2018, Nano letters.

[17]  Adam Gali,et al.  Theory of the optical spin-polarization loop of the nitrogen-vacancy center in diamond , 2018, Physical Review B.

[18]  P. Humphreys,et al.  Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks , 2018, Physical Review A.

[19]  Dirk Englund,et al.  Efficient Extraction of Light from a Nitrogen-Vacancy Center in a Diamond Parabolic Reflector. , 2017, Nano letters.

[20]  M. Markham,et al.  Strongly anisotropic spin relaxation in the neutral silicon vacancy center in diamond , 2017, Physical Review B.

[21]  N. Bar-Gill,et al.  Negative charge enhancement of near-surface nitrogen vacancy centers by multicolor excitation , 2017, Physical Review B.

[22]  David A. Hopper,et al.  Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds Using All-Optical Charge Readout. , 2017, ACS nano.

[23]  Á. Gali,et al.  First-Principles Study of Charge Diffusion between Proximate Solid-State Qubits and Its Implications on Sensor Applications. , 2017, Physical review letters.

[24]  M. Markham,et al.  Observation of an environmentally insensitive solid-state spin defect in diamond , 2017, Science.

[25]  J. Wrachtrup,et al.  Nanoscale nuclear magnetic resonance with chemical resolution , 2017, Science.

[26]  P. Hemmer,et al.  Publisher’s Note: Pulsed Photoelectric Coherent Manipulation and Detection of N−V Center Spins In Diamond [Phys. Rev. Applied 7, 044032 (2017)] , 2017 .

[27]  Jan Meijer,et al.  Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor , 2017, Science.

[28]  Edward H. Chen,et al.  High-sensitivity spin-based electrometry with an ensemble of nitrogen-vacancy centers in diamond , 2017, 1703.07517.

[29]  J. Wrachtrup,et al.  Optical imaging of localized chemical events using programmable diamond quantum nanosensors , 2017, Nature Communications.

[30]  M. Lukin,et al.  Critical Time Crystals in Dipolar Systems. , 2017, Physical review letters.

[31]  Á. Gali,et al.  Enhanced photoelectric detection of NV magnetic resonances in diamond under dual-beam excitation , 2017 .

[32]  Richard L. Taylor,et al.  Nanomechanical Sensing Using Spins in Diamond. , 2016, Nano letters.

[33]  G. Guo,et al.  Near-Infrared-Enhanced Charge-State Conversion for Low-Power Optical Nanoscopy with Nitrogen-Vacancy Centers in Diamond , 2016, 1610.08584.

[34]  Hengyun Zhou,et al.  Observation of discrete time-crystalline order in a disordered dipolar many-body system , 2016, Nature.

[35]  Audrey Lee-Gosselin,et al.  Mapping the microscale origins of magnetic resonance image contrast with subcellular diamond magnetometry , 2016, Nature Communications.

[36]  Martin Stutzmann,et al.  Efficient Electrical Spin Readout of NV^{-} Centers in Diamond. , 2016, Physical review letters.

[37]  C. Boehme,et al.  Electrically detected magnetic resonance spectroscopy , 2017 .

[38]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[39]  Michael J. Mutch,et al.  Spin transport, magnetoresistance, and electrically detected magnetic resonance in amorphous hydrogenated silicon nitride , 2016 .

[40]  D. Budker,et al.  Optical quenching and recovery of photoconductivity in single-crystal diamond , 2016, 1607.08354.

[41]  David A. Hopper,et al.  Near-infrared-assisted charge control and spin readout of the nitrogen-vacancy center in diamond , 2016, 1606.06600.

[42]  M. Dutt,et al.  Charge state dynamics of the nitrogen vacancy center in diamond under 1064-nm laser excitation , 2016, 1603.08066.

[43]  M. Doherty,et al.  Optical patterning of trapped charge in nitrogen-doped diamond , 2016, Nature Communications.

[44]  A. Barbaro Literature review on: Quantum readout of spin resonance in a silicon transistor , 2016 .

[45]  Yoshishige Suzuki,et al.  Pure negatively charged state of the NV center in n -type diamond , 2016 .

[46]  F. Jelezko,et al.  Molecular dynamics simulations of shallow nitrogen and silicon implantation into diamond , 2016 .

[47]  Anchal Gupta,et al.  Efficient signal processing for time-resolved fluorescence detection of nitrogen-vacancy spins in diamond , 2015, 1511.04407.

[48]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[49]  M. Stutzmann,et al.  Bipolar polaron pair recombination in polymer/fullerene solar cells , 2015, 1505.01411.

[50]  Hongbin Sun,et al.  Single-protein spin resonance spectroscopy under ambient conditions , 2015, Science.

[51]  D. Budker,et al.  Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond , 2015, Nature Communications.

[52]  B. Koopmans,et al.  Spin-dependent photophysics in polymers lightly doped with fullerene derivatives , 2015 .

[53]  Tao Dong,et al.  Capacitance Variation Induced by Microfluidic Two-Phase Flow across Insulated Interdigital Electrodes in Lab-On-Chip Devices , 2015, Sensors.

[54]  N. Yao,et al.  State-selective intersystem crossing in nitrogen-vacancy centers , 2014, 1412.4865.

[55]  M. Stutzmann,et al.  Pulsed low-field electrically detected magnetic resonance , 2014, 1410.6464.

[56]  M. Lukin,et al.  Efficient readout of a single spin state in diamond via spin-to-charge conversion. , 2014, Physical review letters.

[57]  F. Reinhard,et al.  Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers. , 2014, Nano letters.

[58]  J. Roch,et al.  Magnetic imaging with an ensemble of nitrogen-vacancy centers in diamond , 2014, 1410.0178.

[59]  Dirk Englund,et al.  Three megahertz photon collection rate from an NV center with millisecond spin coherence , 2014, 1409.3068.

[60]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[61]  D. Twitchen,et al.  Stability of polarized states for diamond valleytronics , 2014, 1403.8073.

[62]  Patrick M. Lenahan,et al.  Spin counting in electrically detected magnetic resonance via low-field defect state mixing , 2014 .

[63]  Bálint Aradi,et al.  Calculation ofthe transitions and migration of nitrogen and vacancy related defects,with implications on the formation of NV centers in bulk diamond , 2013, 1311.6598.

[64]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[65]  L. Hollenberg,et al.  Electronic properties and metrology applications of the diamond NV- center under pressure. , 2013, Physical review letters.

[66]  M. Stutzmann,et al.  Time constants of spin-dependent recombination processes , 2013, 1307.4039.

[67]  D. Twitchen,et al.  Colour-causing defects and their related optoelectronic transitions in single crystal CVD diamond , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[68]  G. Guo,et al.  Optical manipulation of the charge state of nitrogen-vacancy center in diamond , 2013 .

[69]  J Wrachtrup,et al.  Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. , 2013, Physical review letters.

[70]  F. Caruso,et al.  Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe , 2013, Proceedings of the National Academy of Sciences.

[71]  M. D. Lukin,et al.  Optical magnetic imaging of living cells , 2013, Nature.

[72]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[73]  D. Suter,et al.  High-precision nanoscale temperature sensing using single defects in diamond. , 2013, Nano letters.

[74]  H. Duan,et al.  Resolution limits of electron-beam lithography toward the atomic scale. , 2013, Nano letters (Print).

[75]  R. Hanson,et al.  Diamond NV centers for quantum computing and quantum networks , 2013 .

[76]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[77]  D. Rugar,et al.  Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor , 2013, Science.

[78]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[79]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[80]  D. Budker,et al.  Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond , 2012, 1210.5574.

[81]  F. Jelezko,et al.  Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection , 2012, 1209.0268.

[82]  Jeremy L O'Brien,et al.  Solid Immersion Facilitates Fluorescence Microscopy with Nanometer Resolution and Sub-Ångström Emitter Localization , 2012, Advanced materials.

[83]  N. Manson,et al.  Optimum photoluminescence excitation and recharging cycle of single nitrogen-vacancy centers in ultrapure diamond. , 2012, Physical review letters.

[84]  T. Debuisschert,et al.  Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging , 2012, 1206.1201.

[85]  P Cappellaro,et al.  Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems , 2012, Nature Communications.

[86]  Jan Meijer,et al.  Charge state manipulation of qubits in diamond , 2012, Nature Communications.

[87]  Seattle,et al.  Production of oriented nitrogen-vacancy color centers in synthetic diamond , 2011, 1112.5757.

[88]  M. Stutzmann,et al.  Lock-in detection for pulsed electrically detected magnetic resonance. , 2011, The Review of scientific instruments.

[89]  N. Manson,et al.  Optical and Spin Properties of Nitrogen-Vacancy Color Centers in Diamond Crystals, Nanodiamonds, and Proximity to Surfaces , 2012 .

[90]  M. Dutt,et al.  High-dynamic-range magnetometry with a single electronic spin in diamond. , 2011, Nature nanotechnology.

[91]  J Wrachtrup,et al.  High-dynamic-range magnetometry with a single nuclear spin in diamond. , 2012, Nature nanotechnology.

[92]  M. Bonn,et al.  Single substitutional nitrogen defects revealed as electron acceptor states in diamond using ultrafast spectroscopy , 2011 .

[93]  K. Jarašiūnas,et al.  Nonequilibrium carrier dynamics in bulk HPHT diamond at two‐photon carrier generation , 2011 .

[94]  J. Tetienne,et al.  Nanoscale magnetic field mapping with a single spin scanning probe magnetometer , 2011, 1108.4438.

[95]  A. Yacoby,et al.  A robust, scanning quantum system for nanoscale sensing and imaging , 2011, 1108.4437.

[96]  J. Roch,et al.  Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity , 2011, 1108.0178.

[97]  Fedor Jelezko,et al.  Sensing external spins with nitrogen-vacancy diamond , 2011 .

[98]  L. Hollenberg,et al.  Sensing electric fields using single diamond spins , 2011, 1103.3432.

[99]  M. Stutzmann,et al.  Chemical control of the charge state of nitrogen-vacancy centers in diamond , 2010, 1011.5109.

[100]  Hannes Bernien,et al.  Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond , 2010, 1010.1192.

[101]  Fedor Jelezko,et al.  Dynamical Decoupling of a single electron spin at room temperature , 2010, 1008.1953.

[102]  C. Boehme,et al.  Spin-dependent processes in amorphous silicon-rich silicon-nitride , 2010 .

[103]  Ajay K. Pandey,et al.  Bipolaron formation in organic solar cells observed by pulsed electrically detected magnetic resonance. , 2010, Physical review letters.

[104]  D. Budker,et al.  Optical properties of the nitrogen-vacancy singlet levels in diamond , 2010, 1009.0032.

[105]  S. Spillane,et al.  Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond , 2010, Nanotechnology.

[106]  J. Rarity,et al.  Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses , 2010, 1006.2093.

[107]  F. Jelezko,et al.  Creation efficiency of nitrogen-vacancy centres in diamond , 2010 .

[108]  Raymond G. Beausoleil,et al.  Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications , 2009 .

[109]  Robert Jones,et al.  Acceptor level of nitrogen in diamond and the 270-nm absorption band , 2009 .

[110]  Adam Gali,et al.  Theory of the neutral nitrogen-vacancy center in diamond and its application to the realization of a qubit , 2009 .

[111]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[112]  F. Jelezko,et al.  Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond. , 2009, Physical review letters.

[113]  R. Hanson,et al.  Generation and transport of photoexcited electrons in single-crystal diamond , 2009, 0902.1208.

[114]  N. Borys,et al.  Spin Rabi flopping in the photocurrent of a polymer light-emitting diode. , 2008, Nature materials.

[115]  G. Balasubramanian,et al.  Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance , 2008, 0807.2379.

[116]  K. Jarašiūnas,et al.  Optical evaluation of carrier lifetime and diffusion length in synthetic diamonds , 2008 .

[117]  Efthimios Kaxiras,et al.  Ab initio supercell calculations on nitrogen-vacancy center in diamond: Electronic structure and hyperfine tensors , 2008, 0803.1267.

[118]  P. Hemmer,et al.  Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations. , 2008, Physical review letters.

[119]  G. Boero,et al.  Electron counting at room temperature in an avalanche bipolar transistor , 2008 .

[120]  I. Walmsley,et al.  Creating diamond color centers for quantum optical applications , 2007, 0710.5379.

[121]  R. N. Schouten,et al.  Cryogenic amplifier for fast real-time detection of single-electron tunneling , 2007, 0708.0461.

[122]  D. Fisher,et al.  Electron irradiation and the formation of vacancy–interstitial pairs in diamond , 2007 .

[123]  Fedor Jelezko,et al.  Single defect centres in diamond: A review , 2006 .

[124]  M. Stutzmann,et al.  Electrical detection of coherent 31P spin quantum states , 2006, quant-ph/0607178.

[125]  M. Brandt,et al.  Electrically detected magnetic resonance in ion-implanted Si:P nanostructures , 2006, cond-mat/0605516.

[126]  M. Shaw,et al.  Origin of brown coloration in diamond , 2006 .

[127]  J. Wrachtrup,et al.  Photochromism in single nitrogen-vacancy defect in diamond , 2005, cond-mat/0508323.

[128]  Neil B. Manson,et al.  Photo-ionization of the nitrogen-vacancy center in diamond , 2005 .

[129]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[130]  A. T. Collins,et al.  LETTER TO THE EDITOR: The production of vacancies in type Ib diamond , 2003 .

[131]  J. Butler,et al.  Photoluminescence and positron annihilation measurements of nitrogen doped CVD diamond , 2003 .

[132]  D. Twitchen,et al.  High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond , 2002, Science.

[133]  A. T. Collins The Fermi level in diamond , 2002 .

[134]  David N. Jamieson,et al.  Raman investigation of damage caused by deep ion implantation in diamond , 2000 .

[135]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[136]  G. Adriaenssens,et al.  Optical detection of defect centers in CVD diamond , 2000 .

[137]  J. Davies,et al.  Photoluminescence microscopy of TEM irradiated diamond , 2000 .

[138]  Milos Nesladek,et al.  Photochromism of vacancy-related centres in diamond , 2000 .

[139]  T. R. Anthony,et al.  ELECTRON-PARAMAGNETIC-RESONANCE MEASUREMENTS ON THE DIVACANCY DEFECT CENTER R4/W6 IN DIAMOND , 1999 .

[140]  M. Nesladek,et al.  Photoluminescence excitation and quenching spectra in CVD diamond films , 1999 .

[141]  M. Vaněček,et al.  On photocurrent (and EPR) study of defect levels in CVD diamond , 1999 .

[142]  A. Stesmans,et al.  Dominant defect levels in diamond thin films: A photocurrent and electron paramagnetic resonance study , 1998 .

[143]  Carlos Frederico de Oliveira Graeff,et al.  Electrically detected magnetic resonance of a-Si:H at low magnetic fields: the influence of hydrogen on the dangling bond resonance , 1998 .

[144]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[145]  Rosa,et al.  Origin of characteristic subgap optical absorption in CVD diamond films. , 1996, Physical review. B, Condensed matter.

[146]  Mita,et al.  Change of absorption spectra in type-Ib diamond with heavy neutron irradiation. , 1996, Physical review. B, Condensed matter.

[147]  A. Mandelis Signal‐to‐noise ratio in lock‐in amplifier synchronous detection: A generalized communications systems approach with applications to frequency, time, and hybrid (rate window) photothermal measurements , 1994 .

[148]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[149]  W. V. Enckevort,et al.  Temperature dependence of optical absorption by the single-substitutional nitrogen donor in diamond , 1992 .

[150]  E. Oort,et al.  Electric-field-induced modulation of spin echoes of N-V centers in diamond , 1990 .

[151]  Neil B. Manson,et al.  Optically detected spin coherence of the diamond N-V centre in its triplet ground state , 1988 .

[152]  J Walker,et al.  Optical absorption and luminescence in diamond , 1979 .

[153]  J. Hyde,et al.  Pulsed EPR spectrometer, II , 1975 .