Bohm-Bell type experiments: Classical probability approach to (no-)signaling and applications to quantum physics and psychology

We consider the problem of representation of quantum states and observables in the framework of classical probability theory (Kolmogorov's measure-theoretic axiomatics, 1933). Our aim is to show that, in spite of the common opinion, correlations of observables $A_1, A_2$ and $B_1,B_2$ involved in the experiments of the Bohm-Bell type can be expressed as correlations of classical random variables $a_1, a_2$ and $b_1, b_2.$ The crucial point is that correlations $\langle A_i, B_j \rangle$ should be treated as conditional on the selection of the pairs $(i, j).$ The setting selection procedure is based on two random generators $R_A$ and $R_B.$ They are also considered as observables, supplementary to the "basic observables" $A_1, A_2$ and $B_1, B_2.$ These observables are absent in the standard description, e.g., in the scheme for derivation of the CHSH-inequality. We represent them by classical random variables $r_a$ and $r_b.$ Following the recent works of Dzhafarov and collaborators, we apply our conditional correlation approach to characterize (no-)signaling in the classical probabilistic framework. Consideration the Bohm-Bell experimental scheme in the presence of signaling is important for applications outside quantum mechanics, e.g., in psychology and social science.

[1]  Ehtibar N. Dzhafarov,et al.  Context-Content Systems of Random Variables: The Contextuality-by-Default Theory , 2015, 1511.03516.

[2]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[3]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[4]  Yoshiharu Tanaka,et al.  Quantum Adaptivity in Biology: From Genetics to Cognition , 2015, Springer Netherlands.

[5]  Andrei Khrennikov,et al.  Bell Could Become the Copernicus of Probability , 2014, Open Syst. Inf. Dyn..

[6]  Olga V. Man'ko,et al.  Spin state tomography , 1997 .

[7]  Margarita A. Man'ko,et al.  New Entropic Inequalities and Hidden Correlations in Quantum Suprematism Picture of Qudit States † , 2018, Entropy.

[8]  Andrei Khrennikov,et al.  Unconditional Quantum Correlations do not Violate Bell’s Inequality , 2015, 1503.08016.

[9]  Andrei Khrennikov,et al.  Contextual Approach to Quantum Formalism , 2009 .

[10]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[11]  Leslie E Ballentine,et al.  The statistical interpretation of quantum mechanics , 1970 .

[12]  Guillaume Adenier,et al.  Is the fair sampling assumption supported by EPR experiments , 2007 .

[13]  Ehtibar N. Dzhafarov,et al.  Contextuality Analysis of the Double Slit Experiment (with a Glimpse into Three Slits) , 2018, Entropy.

[14]  Ehtibar N. Dzhafarov,et al.  Probabilistic Contextuality in EPR/Bohm-type Systems with Signaling Allowed , 2014, 1406.0243.

[15]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[16]  Andrei Khrennikov,et al.  Evaluating the Maximal Violation of the Original Bell Inequality by Two-Qudit States Exhibiting Perfect Correlations/Anticorrelations , 2018, Entropy.

[17]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[18]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[19]  Harald Atmanspacher,et al.  Epistemic and Ontic Quantum Realities , 2003 .

[20]  Andrei Khrennikov,et al.  ON AN EXPERIMENTAL TEST OF PREQUANTUM THEORY OF CLASSICAL RANDOM FIELDS: AN ESTIMATE FROM ABOVE OF THE COEFFICIENT OF SECOND-ORDER COHERENCE , 2012 .

[21]  Jörn Beyer,et al.  A significant-loophole-free test of Bell's theorem with entangled photons , 2017, Security + Defence.

[22]  Matt Jones,et al.  On contextuality in behavioural data , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Andrei Khrennikov,et al.  Single, Complete, Probability Spaces Consistent With EPR‐Bohm‐Bell Experimental Data , 2009 .

[24]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[25]  William Carbonaro,et al.  After the Bell , 2010 .

[26]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[27]  Arkady Plotnitsky,et al.  Niels Bohr and Complementarity: An Introduction , 2012 .

[28]  G. Brida,et al.  A first test of Wigner function local realistic model , 2002 .

[29]  A.V. Platonov,et al.  Using quantum mechanical framework for language modeling and information retrieval , 2018, 2018 IEEE 12th International Conference on Application of Information and Communication Technologies (AICT).

[30]  Armin W. Schulz,et al.  Interpretations of probability , 2003 .

[31]  Kristel Michielsen,et al.  Logical inference derivation of the quantum theoretical description of Stern–Gerlach and Einstein–Podolsky–Rosen–Bohm experiments , 2018, Annals of Physics.

[32]  Guillaume Adenier,et al.  Test of the no‐signaling principle in the Hensen loophole‐free CHSH experiment , 2016, 1606.00784.

[33]  Andrei Khrennikov,et al.  CHSH Inequality: Quantum Probabilities as Classical Conditional Probabilities , 2014, 1406.4886.

[34]  Andrei Khrennikov Algorithm for Quantum-like Representation: Transformation of Probabilistic Data into Vectors on Bloch's Sphere , 2008, Open Syst. Inf. Dyn..

[35]  Ru Zhang,et al.  Is there contextuality in behavioural and social systems? , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Marian Kupczynski,et al.  Can Einstein with Bohr Debate on Quantum Mechanics Be Closed , 2016 .

[37]  Andrei Khrennikov Towards a Field Model of Prequantum Reality , 2012 .

[38]  Andrei Khrennikov,et al.  Interpretations of Probability , 1999 .

[39]  N. David Mermin,et al.  Boojums All The Way Through , 1990 .

[40]  Ehtibar N. Dzhafarov,et al.  Snow Queen Is Evil and Beautiful: Experimental Evidence for Probabilistic Contextuality in Human Choices , 2017, Decision.

[41]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[42]  Andrei Khrennikov,et al.  Towards Experiments to Test Violation of the Original Bell Inequality , 2018, Entropy.

[43]  Andrei Khrennikov,et al.  On the equivalence of the Clauser–Horne and Eberhard inequality based tests , 2014, 1403.2811.

[44]  Andrei Khrennikov,et al.  Prequantum Classical Statistical Field Theory: Schrödinger Dynamics of Entangled Systems as a Classical Stochastic Process , 2011 .

[45]  Ehtibar N. Dzhafarov,et al.  Selectivity in Probabilistic Causality: Where Psychology Runs Into Quantum Physics , 2011, 1110.2388.

[46]  L. E. Ballentine Interpretations of Probability and Quantum Theory , 2001 .

[47]  Andrei Khrennikov,et al.  Bohr against Bell: complementarity versus nonlocality , 2017 .

[48]  R. N. Schouten,et al.  Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km , 2015, 1508.05949.

[49]  Y. Kano,et al.  A NEW PHASE-SPACE DISTRIBUTION FUNCTION IN THE STATISTICAL THEORY OF THE ELECTROMAGNETIC FIELD , 1965 .

[50]  Joseph P. Zbilut,et al.  A Preliminary Experimental Verification On the Possibility of Bell Inequality Violation in Mental States , 2008 .

[51]  Arthur Fine,et al.  Joint distributions, quantum correlations, and commuting observables , 1982 .

[52]  Shellee D. Dyer,et al.  A strong loophole-free test of local realism , 2015 .

[53]  V. I. Man'ko,et al.  Symplectic tomography as classical approach to quantum systems , 1996 .

[54]  Physikalische Gesellschaft in der Deutschen Demokratischen Republik Fortschritte der Physik = Progress of physics , 1953 .

[55]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[56]  Andrei Khrennikov,et al.  Quantum epistemology from subquantum ontology: quantum mechanics from theory of classical random fields , 2016, 1605.05907.

[57]  Marian Kupczynski,et al.  Closing the Door on Quantum Nonlocality , 2018, Entropy.

[58]  伏見 康治,et al.  Some formal properties of the density matrix , 1940 .

[59]  Ehtibar N. Dzhafarov,et al.  On universality of classical probability with contextually labeled random variables , 2017, Journal of Mathematical Psychology.

[60]  Andrei Khrennikov Schrödinger dynamics as the Hilbert space projection of a realistic contextual probabilistic dynamics , 2005 .

[61]  Andrei Khrennikov Quantum probabilities and violation of CHSH-inequality from classical random signals and threshold type properly calibrated detectors , 2011 .

[62]  Calyampudi Radhakrishna Rao,et al.  Statistics and truth , 1997 .

[63]  L. Ballentine Quantum mechanics : a modern development , 1998 .

[64]  Vladimir I. Man’ko,et al.  Positive distribution description for spin states , 1997 .

[65]  A. Wald,et al.  Probability, statistics and truth , 1939 .