The Suzaku High Resolution X-Ray Spectrometer

The X-Ray Spectrometer (XRS) has been designed to provide the Suzaku Observatory with non-dispersive, high-resolution x-ray spectroscopy. As designed, the instrument covers the energy range 0.3 to 12 keV, which encompasses the most diagnostically rich part of the x-ray band. The sensor consists of a 32-channel array

Ryuichi Fujimoto | Manabu Ishida | Yoshitaka Ishisaki | Yoh Takei | Katsuhiro Narasaki | Dan McCammon | Naomi Ota | Keith C. Gendreau | J. Panek | S. Harvey Moseley | Ritva A. M. Keski-Kuha | Kazuhisa Mitsuda | Oscar Gonzalez | Stephen M. Volz | Michael D. Audley | Kevin R. Boyce | F. Scott Porter | Robert F. Boyle | Michael J. DiPirro | Gary A. Sneiderman | Peter J. Shirron | Thomas G. Bialas | Caroline A. Kilbourne | Takaya Ohashi | Noriko Y. Yamasaki | June L. Tveekrem | Gregory V. Brown | Brent Mott | Christine A. Allen | Hajime Inoue | Andrew E. Szymkowiak | Petar Arsenovic | Masayuki Hirabayashi | U. Morita | Susan Breon | R. L. Kelley | Mikio Yamamoto | Aristides T. Serlemitsos | M. D. Audley | Stephen S. Holt | Jean Cottam | S. Moseley | Mikio Yamamoto | K. Gendreau | K. Narasaki | M. Hirabayashi | R. Fujimoto | K. Mitsuda | N. Yamasaki | Y. Takei | T. Ohashi | Y. Ishisaki | M. Dipirro | P. Shirron | G. Sneiderman | R. Kelley | F. Porter | C. Kilbourne | D. McCammon | A. Szymkowiak | K. Boyce | H. Inoue | M. Ishida | N. Ota | C. Allen | B. Mott | Y. Ogawara | S. Holt | J. Cottam | J. Tveekrem | Yoshiaki Ogawara | T. Furusho | R. Boyle | Gene G. Gochar | Carol S. Jones | T. Furusho | U. Morita | A. T. Serlemitsos | J. Panek | S. Volz | S. Breon | G. Brown | T. Bialas | P. Arsenovic | Ó. González | R. Keski-kuha | O. González | S. S. Holt | Rich Kelley | Michael J. DiPirro | Christine A. Allen | Robert F. Boyle | Gregory V. Brown | Gene G. Gochar | Carol S. Jones | S. Harvey Moseley | John S. Panek | Stephen M. Volz

[1]  Kazuhisa Mitsuda,et al.  The XRS system – the first cryogenic X-ray detector in orbit , 1999 .

[2]  Jeanette R. Malkin Pulling the Pants off History: Politics and Postmodernism in Thomas Bernhard's "Eve of Retirement" , 1995 .

[3]  Marcos Bavdaz,et al.  Status of the XEUS x-ray observatory mission , 2005, SPIE Optics + Photonics.

[4]  J. Scofield,et al.  Energy-dependent excitation cross section measurements of the diagnostic lines of Fe XVII. , 2006, Physical review letters.

[5]  J. Beeman,et al.  X-Ray and Gamma-Ray Astronomy with NTD Germanium-based Microcalorimeters , 2002 .

[6]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[7]  J. Nagamatsu,et al.  Superconductivity at 39 K in magnesium diboride , 2001, Nature.

[8]  Regis P. Brekosky,et al.  Next generation of silicon-based x-ray microcalorimeters , 2003, SPIE Astronomical Telescopes + Instrumentation.

[9]  Ryuichi Fujimoto,et al.  ASTRO-E/XRS blocking-filter calibration , 1999, Optics & Photonics.

[10]  Ryuichi Fujimoto,et al.  ASTRO-E high-resolution x-ray spectrometer , 1999, Optics & Photonics.

[11]  Elmar Pfeffermann,et al.  The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera , 2001 .

[12]  de T. Jong,et al.  The Infrared Astronomical Satellite (IRAS) mission , 1984 .

[13]  S. Moseley,et al.  Development of microcalorimeters for high resolution X-ray spectroscopy , 1993 .

[14]  S. Terracol,et al.  The Astro-E2 X-ray spectrometer/EBIT microcalorimeter x-ray spectrometer , 2004 .

[15]  Richard L. Kelley,et al.  Detector assembly and the ultralow-temperature refrigerator for XRS , 1999, Optics & Photonics.

[16]  Kent D. Irwin,et al.  SQUID multiplexers for transition-edge sensors , 2002 .

[17]  Richard L. Kelley,et al.  GEANT modeling of the low-earth-orbit cosmic-ray background for the Astro-E2 XRS instrument , 2004, SPIE Astronomical Telescopes + Instrumentation.

[18]  Peter Beiersdorfer,et al.  Laboratory X-Ray Astrophysics , 2003 .

[19]  Drake,et al.  First Light Measurements of Capella with the Low-Energy Transmission Grating Spectrometer aboard the Chandra X-Ray Observatory , 2000, The Astrophysical journal.

[20]  H. Tananbaum,et al.  The science goals of the Constellation-X Mission , 2004, SPIE Astronomical Telescopes + Instrumentation.

[21]  Shunsaku Okada,et al.  The X-Ray Telescope onboard Suzaku , 2007 .

[22]  M. Dipirro,et al.  Mass Gauging and Thermometry on the Superfluid Helium on-Orbit Transfer Flight Demonstration , 1994 .

[23]  R. Fujimoto,et al.  Performance verification of the Suzaku X-ray Spectrometer in the flight configuration , 2006 .

[24]  J. Herder,et al.  The Reflection Grating Spectrometer on-board XMM-Newton: Status of the Calibrations , 2002 .

[25]  Ryuichi Fujimoto,et al.  Design and performance of the ASTRO-E/XRS microcalorimeter array and anticoincidence detector , 1999, Optics & Photonics.

[26]  R. Fujimoto,et al.  Ground calibration of the XRS microcalorimeter onboard Suzaku , 2006 .

[27]  S. Moseley,et al.  Thermal detectors as X-ray spectrometers , 1984 .

[28]  Ryuichi Fujimoto,et al.  Design and performance of the ASTRO-E/XRS signal processing system , 1999, Optics & Photonics.

[29]  Ryuichi Fujimoto,et al.  Analysis of the Suzaku/XRS background , 2006 .

[30]  M. Hirabayashi,et al.  The Astro-E2/XRS-2 helium insert system , 2006 .

[31]  Regis P. Brekosky,et al.  Laboratory astrophysics using a spare XRS microcalorimeter , 2000, SPIE Optics + Photonics.

[32]  M. Dipirro,et al.  Suppression of Superfluid Film Flow in the XRS Helium Dewar , 1998 .

[33]  Neon dewar for the X-ray spectrometer onboard Suzaku , 2006 .

[34]  Yoshitaka Ishisaki,et al.  Filter wheel system for the x-ray microcalorimeters on board ASTRO-E , 1999, Optics & Photonics.

[35]  C. Kilbourne The science and technology of microcalorimeter arrays , 2004 .

[36]  P. Gondoin,et al.  XMM-Newton observatory. I. The spacecraft and operations , 2001 .

[37]  D. Dewey,et al.  High-Resolution X-Ray Spectra of Capella: Initial Results from the Chandra High-Energy Transmission Grating Spectrometer , 2000, astro-ph/0006457.

[38]  M. C. Weisskopf,et al.  An Overview of the Performance and Scientific Results from the Chandra X‐Ray Observatory , 2001, astro-ph/0110308.

[39]  M. Hirabayashi,et al.  The X-Ray Spectrometer (XRS): a multi-stage cryogenic instrument for the Astro-E X-ray astrophysics mission , 1996 .

[40]  K. Widmann,et al.  Laboratory astrophysics and atomic physics using the NASA/GSFC microcalorimeter spectrometers at the LLNL electron beam ion trap and radiation properties facility , 2006 .

[41]  R. Kelley,et al.  Characterization of the Astro-E2 X-ray spectrometer , 2004 .

[42]  F. Porter,et al.  X-Ray Astronomy and Astrophysics , 2005 .

[43]  W. Goldacker,et al.  Properties of MgB2 superconductors with regard to space applications , 2006 .

[44]  B. Aschenbach,et al.  Design, Construction, And Performance Of The ROSAT High-Resolution X-Ray Mirror Assembly , 1988, Optics & Photonics.

[45]  Aristides T. Serlemitsos,et al.  Spaceworthy ADR: recent developments , 1990, Optics & Photonics.

[46]  S. H. Moseley,et al.  A High Spectral Resolution Observation of the Soft X-Ray Diffuse Background with Thermal Detectors , 2000, astro-ph/0205012.

[47]  Caroline K. Stahle,et al.  Intrinsic 1/f noise in doped silicon thermistors for cryogenic calorimeters , 1998, Optics & Photonics.

[48]  S M Kahn,et al.  Laboratory Simulation of Charge Exchange-Produced X-ray Emission from Comets , 2003, Science.

[49]  Gregory V. Brown,et al.  Excitation Cross Section Measurement for n = 3 to n = 2 Line Emission in Fe20+ to Fe23+ , 2005 .

[50]  Regis P. Brekosky,et al.  Fabrication process responsible for fundamentally improving Silicon X-ray microcalorimeter arrays , 2004 .

[51]  Christian Enss,et al.  Cryogenic particle detection , 2005 .

[52]  Ryuichi Fujimoto,et al.  ASTRO-E/XRS calibration program and results , 1999, Optics & Photonics.

[53]  Susan Breon,et al.  A High Tc Superconducting Current Lead Assembly for the XDS Helium Cryostat , 1998 .

[54]  Samuel Harvey Moseley,et al.  Signal processing for microcalorimeters , 1993 .