Experimental assessment of cardiovascular physiology in the chick embryo

High resolution assessment of cardiac functional parameters is crucial in translational animal research. The chick embryo is a historically well‐used in vivo model for cardiovascular research due to its many practical advantages, and the conserved form and function of the chick and human cardiogenesis programs. This review aims to provide an overview of several different technical approaches for chick embryo cardiac assessment. Doppler echocardiography, optical coherence tomography, micromagnetic resonance imaging, microparticle image velocimetry, real‐time pressure monitoring, and associated issues with the techniques will be discussed. Alongside this discussion, we also highlight recent advances in cardiac function measurements in chick embryos.

[1]  H. Yalcin,et al.  Blood Flow Disturbance and Morphological Alterations Following the Right Atrial Ligation in the Chick Embryo , 2022, Frontiers in Physiology.

[2]  H. Yalcin,et al.  Hemodynamic and Structural Comparison of Human Fetal Heart Development Between Normally Growing and Hypoplastic Left Heart Syndrome-Diagnosed Hearts , 2022, Frontiers in Physiology.

[3]  W. Burggren,et al.  Beyond the Chicken: Alternative Avian Models for Developmental Physiological Research , 2021, Frontiers in Physiology.

[4]  H. Yalcin,et al.  Numerical Investigation of the Fetal Left Heart Hemodynamics During Gestational Stages , 2021, Frontiers in Physiology.

[5]  H. Yalcin,et al.  Mechanosensitive Pathways in Heart Development: Findings from Chick Embryo Studies , 2021, Journal of cardiovascular development and disease.

[6]  A. Dunisławska,et al.  Chicken embryo as a model in epigenetic research , 2021, Poultry science.

[7]  Russell A. Gould,et al.  Effect of left atrial ligation-driven altered inflow hemodynamics on embryonic heart development: clues for prenatal progression of hypoplastic left heart syndrome , 2021, Biomechanics and modeling in mechanobiology.

[8]  Jan Baumgart,et al.  Monitoring of tumor growth and vascularization with repetitive ultrasonography in the chicken chorioallantoic-membrane-assay , 2020, Scientific Reports.

[9]  Antonio Pepe,et al.  Detection, segmentation, simulation and visualization of aortic dissections: A review , 2020, Medical Image Anal..

[10]  K. Tobita,et al.  Validating the Paradigm That Biomechanical Forces Regulate Embryonic Cardiovascular Morphogenesis and Are Fundamental in the Etiology of Congenital Heart Disease , 2020, Journal of cardiovascular development and disease.

[11]  K. Pekkan,et al.  Microstructure of early embryonic aortic arch and its reversibility following mechanically-altered hemodynamic load release. , 2020, American journal of physiology. Heart and circulatory physiology.

[12]  R. Lansford,et al.  Follow Me! A Tale of Avian Heart Development with Comparisons to Mammal Heart Development , 2020, Journal of cardiovascular development and disease.

[13]  L. Du,et al.  Micro-Particle Image Velocimetry Investigation of Flow Fields of SonoVue Microbubbles Mediated by Ultrasound and Their Relationship With Delivery , 2020, Frontiers in Pharmacology.

[14]  Huseyin Enes Salman,et al.  Advanced blood flow assessment in Zebrafish via experimental digital particle image velocimetry and computational fluid dynamics modeling. , 2019, Micron.

[15]  H. Yalcin,et al.  Adaptation of a Mice Doppler Echocardiography Platform to Measure Cardiac Flow Velocities for Embryonic Chicken and Adult Zebrafish , 2019, Front. Bioeng. Biotechnol..

[16]  G. Schevzov,et al.  Myosin II governs intracellular pressure and traction by distinct tropomyosin-dependent mechanisms , 2019, Molecular biology of the cell.

[17]  L. Zühlke,et al.  Global birth prevalence of congenital heart defects 1970–2017: updated systematic review and meta-analysis of 260 studies , 2019, International journal of epidemiology.

[18]  M. Salerno,et al.  Role of Cardiac Magnetic Resonance Imaging in Valvular Heart Disease: Diagnosis, Assessment, and Management , 2018, Current Cardiology Reports.

[19]  A. G. Gittenberger-de Groot,et al.  Hemodynamics in Cardiac Development , 2018, Journal of cardiovascular development and disease.

[20]  J. Carson,et al.  Hemodynamics Modify Collagen Deposition in the Early Embryonic Chicken Heart Outflow Tract , 2017, Journal of cardiovascular development and disease.

[21]  V. Sée,et al.  Magnetic Resonance Imaging for Characterization of a Chick Embryo Model of Cancer Cell Metastases , 2017, bioRxiv.

[22]  S. A. Khonsary Guyton and Hall: Textbook of Medical Physiology , 2017, Surgical Neurology International.

[23]  L. David,et al.  Increased Hemodynamic Load in Early Embryonic Stages Alters Myofibril and Mitochondrial Organization in the Myocardium , 2017, Front. Physiol..

[24]  S. Loughna,et al.  Effect of altered haemodynamics on the developing mitral valve in chick embryonic heart , 2017, Journal of molecular and cellular cardiology.

[25]  F. Reuter,et al.  Flow fields and vortex dynamics of bubbles collapsing near a solid boundary , 2017 .

[26]  K. Thornburg,et al.  Blood flow patterns underlie developmental heart defects. , 2017, American journal of physiology. Heart and circulatory physiology.

[27]  A. Bradu,et al.  Closed loop tracked Doppler optical coherence tomography based heart monitor for the Drosophila melanogaster larvae , 2016, Journal of biophotonics.

[28]  Kirill V Larin,et al.  Live four-dimensional optical coherence tomography reveals embryonic cardiac phenotype in mouse mutant. , 2015, Journal of biomedical optics.

[29]  Jianrong Xu,et al.  Monitoring brain development of chick embryos in vivo using 3.0 T MRI: subdivision volume change and preliminary structural quantification using DTI , 2015, BMC Developmental Biology.

[30]  J. Shambrook,et al.  MRI in adult patients with aortic coarctation: diagnosis and follow-up. , 2015, Clinical radiology.

[31]  V. Rasche,et al.  High‐resolution MRI analysis of breast cancer xenograft on the chick chorioallantoic membrane , 2015, NMR in biomedicine.

[32]  J. Freund,et al.  Blood flow mechanics in cardiovascular development , 2015, Cellular and Molecular Life Sciences.

[33]  K. Pekkan,et al.  Investigating developmental cardiovascular biomechanics and the origins of congenital heart defects , 2014, Front. Physiol..

[34]  H. Yalcin Femtosecond laser photodisruption of vitelline vessels of avian embryos as a technique to study embryonic vascular remodeling , 2014, Experimental biology and medicine.

[35]  Jonathan T. Butcher,et al.  Mechanical regulation of cardiac development , 2014, Front. Physiol..

[36]  Madeline Midgett,et al.  Congenital heart malformations induced by hemodynamic altering surgical interventions , 2014, Front. Physiol..

[37]  Andrew M. Rollins,et al.  Capturing structure and function in an embryonic heart with biophotonic tools , 2014, Front. Physiol..

[38]  R. Price,et al.  The impact of flow-induced forces on the morphogenesis of the outflow tract , 2014, Front. Physiol..

[39]  Jack A. Wells,et al.  Diffusion microscopic MRI of the mouse embryo: Protocol and practical implementation in the splotch mouse model , 2014, Magnetic resonance in medicine.

[40]  Rachel D. Vanderlaan,et al.  Heart failure in congenital heart disease: the role of genes and hemodynamics , 2014, Pflügers Archiv - European Journal of Physiology.

[41]  P. Rajiah CT and MRI in the Evaluation of Thoracic Aortic Diseases , 2013, International journal of vascular medicine.

[42]  Sevan Goenezen,et al.  Alterations in pulse wave propagation reflect the degree of outflow tract banding in HH18 chicken embryos. , 2013, American journal of physiology. Heart and circulatory physiology.

[43]  Brett E Bouma,et al.  Optical coherence tomography– 15 years in cardiology. , 2013, Circulation journal : official journal of the Japanese Circulation Society.

[44]  Claudia E Korcarz,et al.  Focused cardiac ultrasound: recommendations from the American Society of Echocardiography. , 2013, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[45]  T. Leiner,et al.  Magnetic resonance imaging is more sensitive than computed tomography angiography for the detection of endoleaks after endovascular abdominal aortic aneurysm repair: a systematic review. , 2013, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[46]  K. Pekkan,et al.  Critical Transitions in Early Embryonic Aortic Arch Patterning and Hemodynamics , 2013, PloS one.

[47]  Prahlad G. Menon,et al.  Time-resolved OCT-μPIV: a new microscopic PIV technique for noninvasive depth-resolved pulsatile flow profile acquisition , 2013 .

[48]  Prodromos Parasoglou,et al.  High‐resolution MRI of early‐stage mouse embryos , 2013, NMR in biomedicine.

[49]  H. Yalcin,et al.  Computational Fluid Dynamics of Developing Avian Outflow Tract Heart Valves , 2012, Annals of Biomedical Engineering.

[50]  Jonathan T Butcher,et al.  Hemodynamic patterning of the avian atrioventricular valve , 2011, Developmental dynamics : an official publication of the American Association of Anatomists.

[51]  Suzanne Duce,et al.  Micro-magnetic resonance imaging study of live quail embryos during embryonic development , 2011, Magnetic resonance imaging.

[52]  N. Nishimura,et al.  Abstract 19575: Non-invasive Creation of Localized Embryonic Heart Defects via Multiphoton-guided Femtosecond-laser Photoablation , 2010 .

[53]  Ruikang K. Wang,et al.  Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography , 2010, Biomedical optics express.

[54]  Richard Manasseh,et al.  Cavitation microstreaming and stress fields created by microbubbles. , 2010, Ultrasonics.

[55]  A. Joyner,et al.  Three‐dimensional micro‐MRI analysis of cerebral artery development in mouse embryos , 2009, Magnetic resonance in medicine.

[56]  J. Oh,et al.  Doppler echocardiography: a contemporary review. , 2009, Journal of cardiology.

[57]  J. T. Erichsen,et al.  3-Dimensional modelling of chick embryo eye development and growth using high resolution magnetic resonance imaging. , 2009, Experimental eye research.

[58]  A F W van der Steen,et al.  Doppler flow velocity waveforms in the embryonic chicken heart at developmental stages corresponding to 5–8 weeks of human gestation , 2009, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[59]  Joseph Izatt,et al.  Quantitative Measurement of Blood Flow Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry , 2009, Anatomical record.

[60]  Jeffrey H Maki,et al.  Cardiovascular magnetic resonance imaging for valvular heart disease: technique and validation. , 2009, Circulation.

[61]  M. Dickinson,et al.  Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography. , 2008, Journal of biomedical optics.

[62]  R. Kwong,et al.  Application of cardiac magnetic resonance imaging in cardiomyopathy , 2008, Current heart failure reports.

[63]  Ruikang K. Wang,et al.  Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation , 2008, Physics in medicine and biology.

[64]  Barrie Condon,et al.  Images in cardiovascular medicine. Noninvasive self-gated magnetic resonance cardiac imaging of developing chick embryos in ovo. , 2008, Circulation.

[65]  K. Norozi,et al.  High‐resolution in vivo imaging of the cross‐sectional deformations of contracting embryonic heart loops using optical coherence tomography , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[66]  David Sedmera,et al.  High‐frequency ultrasonographic imaging of avian cardiovascular development , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[67]  James A. White,et al.  The role of cardiovascular MRI in heart failure and the cardiomyopathies. , 2007, Magnetic resonance imaging clinics of North America.

[68]  Barrie Condon,et al.  Noninvasive monitoring of chick development in ovo using a 7T MRI system from day 12 of incubation through to hatching , 2007, Journal of magnetic resonance imaging : JMRI.

[69]  Renato Perucchio,et al.  Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube. , 2007, Journal of biomechanical engineering.

[70]  Roger R Markwald,et al.  Transitions in Early Embryonic Atrioventricular Valvular Function Correspond With Changes in Cushion Biomechanics That Are Predictable by Tissue Composition , 2007, Circulation research.

[71]  Richard Manasseh,et al.  Cavitation microstreaming patterns in single and multiple bubble systems , 2007, Journal of Fluid Mechanics.

[72]  J. Fujimoto,et al.  Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. , 2006, Optics letters.

[73]  Colin K. L. Phoon,et al.  Imaging Tools for the Developmental Biologist: Ultrasound Biomicroscopy of Mouse Embryonic Development , 2006, Pediatric Research.

[74]  Daniel L Marks,et al.  Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system. , 2006, Journal of biomedical optics.

[75]  Michael W. Jenkins,et al.  4D embryonic cardiography using gated optical coherence tomography. , 2006, Optics express.

[76]  K. Tobita,et al.  Impact of Hypoxia on Early Chick Embryo Growth and Cardiovascular Function , 2005, Pediatric Research.

[77]  M. Simons,et al.  Role of Angiogenesis in Cardiovascular Disease: A Critical Appraisal , 2005, Circulation.

[78]  H. Dvorak,et al.  Angiogenesis: update 2005 , 2005, Journal of thrombosis and haemostasis : JTH.

[79]  Bradley B Keller,et al.  Arterial hemodynamics and mechanical properties after circulatory intervention in the chick embryo , 2005, Journal of Experimental Biology.

[80]  M. Sivananthan,et al.  Role of MRI in clinical cardiology , 2004, The Lancet.

[81]  O. Baskurt,et al.  Blood rheology and hemodynamics. , 2003, Seminars in thrombosis and hemostasis.

[82]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[83]  Robert G. Gourdie,et al.  Hemodynamics Is a Key Epigenetic Factor in Development of the Cardiac Conduction System , 2003, Circulation research.

[84]  F Stuart Foster,et al.  In vivo imaging of embryonic development in the mouse eye by ultrasound biomicroscopy. , 2003, Investigative ophthalmology & visual science.

[85]  W. Hop,et al.  Acutely altered hemodynamics following venous obstruction in the early chick embryo , 2003, Journal of Experimental Biology.

[86]  Gabriel Acevedo-Bolton,et al.  Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis , 2003, Nature.

[87]  Joseph A. Izatt,et al.  Optical Coherence Tomography: A New High-Resolution Imaging Technology to Study Cardiac Development in Chick Embryos , 2002, Circulation.

[88]  C. Blanco,et al.  The chicken embryo in developmental physiology of the cardiovascular system: a traditional model with new possibilities. , 2002, American journal of physiology. Regulatory, integrative and comparative physiology.

[89]  C. Otto,et al.  Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. , 2002, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[90]  H. Yost,et al.  Cardiac morphology and blood pressure in the adult zebrafish , 2001, The Anatomical record.

[91]  N. Chen,et al.  Imaging of fluid flow velocity using Doppler optical coherence tomography: preliminary results , 2001, Proceedings of the IEEE 27th Annual Northeast Bioengineering Conference (Cat. No.01CH37201).

[92]  G G Hartnell,et al.  Imaging of Aortic Aneurysms and Dissection: CT and MRI , 2001, Journal of thoracic imaging.

[93]  J. Altimiras,et al.  Control of blood pressure mediated by baroreflex changes of heart rate in the chicken embryo (Gallus gallus). , 2000, American journal of physiology. Regulatory, integrative and comparative physiology.

[94]  T G van Leeuwen,et al.  High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography. , 1999, Optics letters.

[95]  M. Montegomery,et al.  Hemodynamic Abnormalities in Fetuses with Congenital Heart Disease , 1999, Pediatric Cardiology.

[96]  E. Clark,et al.  Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions , 1999, The Anatomical record.

[97]  J. Izatt,et al.  High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography. , 1997, Optics express.

[98]  M. V. van Gemert,et al.  Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. , 1997, Optics letters.

[99]  R E Poelmann,et al.  Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. , 1997, Circulation research.

[100]  G A Johnson,et al.  Magnetic resonance microscopy of embryos. , 1996, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[101]  B. Keller,et al.  Dorsal aortic impedance in stage 24 chick embryo following acute changes in circulating blood volume. , 1996, The American journal of physiology.

[102]  R. Gutiérrez,et al.  Angiogenesis: an update. , 1994, Histology and histopathology.

[103]  G. Johnson,et al.  Magnetic resonance microscopy of mouse embryos. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[104]  J. Wladimiroff,et al.  Hemodynamic Parameters of Stage 20 to Stage 35 Chick Embryo , 1993, Pediatric Research.

[105]  E. Effmann,et al.  MR microscopy of chick embryo vasculature , 1992, Journal of magnetic resonance imaging : JMRI.

[106]  M. Nakazawa,et al.  Effect of Atrial Natriuretic Peptide on Hemodynamics of the Stage 21 Chick Embryo , 1990, Pediatric Research.

[107]  J. Huhta,et al.  Noninvasive Ultrasonic Assessment of Chick Embryo Cardiac Function , 1990 .

[108]  N. Hu,et al.  Hemodynamics of the Stage 12 to Stage 29 Chick Embryo , 1989, Circulation research.

[109]  P. Frommelt,et al.  Effect of increased pressure on ventricular growth in stage 21 chick embryos. , 1989, The American journal of physiology.

[110]  E. Effmann,et al.  Magnetic resonance microscopy of chick embryos in ovo. , 1988, Teratology.

[111]  J. F. Keane,et al.  Diagnostic and Interventional Catheterization in Congenital Heart Disease , 1987, Springer US.

[112]  G. Johnson,et al.  Three-dimensional magnetic resonance microscopy of the developing chick embryo. , 1986, Investigative radiology.

[113]  E. Clark,et al.  Ventricular function and morphology in chick embryo from stages 18 to 29. , 1986, The American journal of physiology.

[114]  J. Wispé,et al.  Effect of Environmental Hypothermia on Vitelline Artery Blood Pressure and Vascular Resistance in the Stage 18, 21, and 24 Chick Embryo , 1985, Pediatric Research.

[115]  H. Tazawa,et al.  Response of egg temperature, heart rate and blood pressure in the chick embryo to hypothermal stress , 1985, Journal of Comparative Physiology B.

[116]  E. Clark,et al.  Developmental Hemodynamic Changes in the Chick Embryo from Stage 18 to 27 , 1982, Circulation research.

[117]  H. Tazawa Measurement of blood pressure of chick embryo with an implanted needle catheter. , 1981, Journal of applied physiology: respiratory, environmental and exercise physiology.

[118]  G. M. Rajala,et al.  Abnormally elevated blood pressure in the trypan blue-treated chick embryo during early morphogenesis. , 1980, Teratology.

[119]  H. Girard Arterial pressure in the chick embryo. , 1973, The American journal of physiology.

[120]  H. Girard Adrenergic sensitivity of circulation in the chick embryo. , 1973, The American journal of physiology.

[121]  J. Nora Etiologic factors in congenital heart diseases. , 1971, Pediatric clinics of North America.

[122]  C. Grabowski,et al.  The effects of teratogenic doses of hypoxia on the blood pressure of chick embryos. , 1969, Teratology.

[123]  R. Boucek,et al.  Ventricular blood pressures and competency of valves in the early embryonic chick heart , 1965, The Anatomical record.

[124]  E. Holman Thoughts On the Dynamics of Blood Flow , 1950, Angiology.

[125]  M. Valgimigli,et al.  Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve. , 2015, EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology.

[126]  P. Davies,et al.  Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology , 2009, Nature Clinical Practice Cardiovascular Medicine.

[127]  W. Gibby Basic principles of magnetic resonance imaging. , 2005, Neurosurgery clinics of North America.

[128]  K. Tobita,et al.  12 Impact of Hypoxia on Early Chick Embryo Growth and Cardiovascular Function. , 2005 .

[129]  W. Burggren,et al.  Cardiovascular regulation during hypoxia in embryos of the domestic chicken Gallus gallus. , 2003, American journal of physiology. Regulatory, integrative and comparative physiology.

[130]  T. Geva,et al.  Blood Flow Measurement by Magnetic Resonance Imaging in Congenital Heart Disease , 2000, Pediatric Cardiology.

[131]  J. F. Keane,et al.  Hemodynamic Evaluation of Congenital Heart Disease , 2000 .

[132]  R E Poelmann,et al.  Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal. , 1999, Cardiovascular research.

[133]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[134]  D. Benson,et al.  Relationship between cardiac cycle length and ventricular relaxation rate in the chick embryo. , 1992, Pediatric research.

[135]  C. Gaber Doppler echocardiography. , 1991, Problems in veterinary medicine.

[136]  E. Clark,et al.  Mechanisms in the Pathogenesis of Congenital Cardiac Malformations , 1987 .

[137]  C S Peskin,et al.  Hemodynamics in congenital heart disease. , 1986, Computers in biology and medicine.

[138]  G A Johnson,et al.  Magnetic resonance microscopy in neurologic models. , 1986, Acta radiologica. Supplementum.

[139]  M. Rutkowski,et al.  Etiology of congenital heart disease. , 1970, Cardiovascular clinics.

[140]  L. V. van Mierop,et al.  Development of arterial blood pressure in the chick embryo. , 1967, The American journal of physiology.