Pitch angle scattering and synchrotron radiation of relativistic runaway electrons in tokamak stochastic magnetic fields

In a recent work [J. R. Martin-Solis and R. Sanchez, Phys. Plasmas 13, 012508 (2006)], the increase that the presence of stochastic magnetic fields causes on the synchrotron radiation losses of relativistic runaway electrons was quantified using a guiding-center approximation. Here, we complete those studies by considering instead the mechanism which dominates the interaction at the gyromotion level. It is shown that, under typical tokamak conditions, the resonant cyclotron interaction with high enough parallel (to the magnetic field) wave numbers (k∥) modes can create, even for moderate magnetic fluctuation levels, an upper bound on the runaway energy. Implications for disruption-generated runaway electrons will be also discussed.

[1]  M. Rosenbluth,et al.  Electron Heat Transport in a Tokamak with Destroyed Magnetic Surfaces , 1978, Hamiltonian Dynamical Systems.

[2]  J. R. Martin-Solis,et al.  Estimation of synchrotron radiation and limiting energy of high-energy runaway electrons in tokamak stochastic magnetic fields , 2006 .

[3]  Jose Ramon Martin-Solis,et al.  Dynamics of high energy runaway electrons in the Frascati Tokamak Upgrade , 2003 .

[4]  R. Aymar,et al.  The ITER design , 2002 .

[5]  J. R. Martin-Solis,et al.  Interaction of runaway electrons with lower hybrid waves via anomalous Doppler broadening , 2002 .

[6]  R. R. Khayrutdinov,et al.  Runaway current termination in JT-60U , 2002 .

[7]  J. R. Martin-Solis,et al.  Effect of magnetic and electrostatic fluctuations on the runaway electron dynamics in tokamak plasmas , 1999 .

[8]  R. Yoshino,et al.  Generation and termination of runaway electrons at major disruptions in JT-60U , 1999 .

[9]  Jose Ramon Martin-Solis,et al.  Energy limits on runaway electrons in tokamak plasmas , 1999 .

[10]  Jose Ramon Martin-Solis,et al.  Momentum–space structure of relativistic runaway electrons , 1998 .

[11]  Fussmann,et al.  Dynamics of runaway electrons in the magnetic field of a tokamak. , 1995, Physical review letters.

[12]  R. Duvall,et al.  Quasilinear diffusion in stochastic magnetic fields: Reconciliation of drift‐orbit modification calculations , 1993 .

[13]  A. Wootton,et al.  Runaway electrons as a diagnostic of magnetic fluctuations in the edge plasma of the Texas Experimental Tokamak , 1992 .

[14]  P. Catto,et al.  Effect of drifts on the diffusion of runaway electrons in tokamak stochastic magnetic fields , 1992 .

[15]  D. Moreau,et al.  Stochastic Instability of Relativistic Runaway Electrons Due to Lower Hybrid Waves , 1991 .

[16]  A. J. Russo Effect of ripple on runaway electrons in tokamaks , 1991 .

[17]  J. Rax,et al.  Stochastic Instability of Runaway Electrons in Tokamaks , 1990 .

[18]  P. Diamond,et al.  A study of runaway electron confinement in the ASDEX tokamak , 1988 .

[19]  R. A. Cairns,et al.  Velocity-space structure of runaway electrons , 1986 .

[20]  R J Bickerton,et al.  The Joint European Torus: installation, first results and prospects , 1985 .

[21]  H. Mynick,et al.  Transport of runaway and thermal electrons due to magnetic microturbulence , 1981 .

[22]  G. Fussmann On the motion of runaway electrons in momentum space , 1979 .