Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation

Although Nernst observed ionic conduction of zirconia-yttria solutions in 1899, the field of oxygen separation research remained dormant. In the last 30 years, research efforts by the scientific community intensified significantly, stemming from the pioneering work of Takahashi and co-workers, with the initial development of mixed ionic-electronic conducting (MIEC) oxides. A large number of MIEC compounds have been synthesized and characterized since then, mainly based on perovskites (ABO(3-delta) and A(2)BO(4 +/-delta)) and fluorites (A(delta)B(1-delta)O(2-delta) and A(2 delta)B(2-2 delta)O(3)), or dual-phases by the introduction of metal or ceramic elements. These compounds form dense ceramic membranes, which exhibit significant oxygen ionic and electronic conductivity at elevated temperatures. in turn, this process allows for the ionic transport of oxygen from air due to the differential partial pressure of oxygen across the membrane, providing the driving force for oxygen ion transport. As a result, defect-free synthesized membranes deliver 100% pure oxygen. Electrons involved in the electrochemical oxidation and reduction of oxygen ions and oxygen molecules respectively are transported in the opposite direction, thus ensuring overall electrical neutrality. Notably, the fundamental application of the defect theory was deduced to a plethora of MIEC materials over the last 30 years, providing the understanding of electronic and ionic transport, in particular when dopants are introduced to the compound of interest. As a consequence, there are many special cases of ionic oxygen transport limitation accompanied by phase changes, depending upon the temperature and oxygen partial pressure operating conditions. This paper aims at reviewing all the significant and relevant contribution of the research community in this area in the last three decades in conjunction with theoretical principles.

[1]  N. M. Tallan,et al.  Electrical Properties and Defect Structure of Y2O3 , 1966 .

[2]  S. Kojima,et al.  Raman scattering on the B-site order controlled by A-site substitution in relaxor Perovskite ferroelectrics , 2000 .

[3]  Sangtae Kim,et al.  Diffusion and surface exchange coefficients in mixed ionic electronic conducting oxides from the pressure dependence of oxygen permeation , 1998 .

[4]  Rustum Roy,et al.  The perovskite structure – a review of its role in ceramic science and technology , 2000 .

[5]  D. McLean,et al.  Grain boundaries in metals , 1958 .

[6]  F. Tietz,et al.  Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes , 2000 .

[7]  C. O'connor,et al.  Recent advances in the liquid-phase syntheses of inorganic nanoparticles. , 2004, Chemical reviews.

[8]  B. Boukamp,et al.  Microstructural development, electrical properties and oxygen permeation of zirconia-palladium composites , 1995 .

[9]  Per Kofstad,et al.  High Temperature Oxidation of Metals , 1966 .

[10]  John B. Goodenough Oxide-ion electrolytes , 2003 .

[11]  V. Kharton,et al.  Mixed ionic–electronic conductors: effects of ceramic microstructure on transport properties , 2002 .

[12]  A. Kovalevsky,et al.  Faradaic efficiency and oxygen permeability of Sr0.97Ti0.60Fe0.40O3−δ perovskite , 2000 .

[13]  Sukhvinder P.S. Badwal,et al.  Science and Technology of Zirconia V , 1993 .

[14]  Brian C. H. Steele Ceramic ion conducting membranes , 1996 .

[15]  W. L. Worrell,et al.  Oxide solid electrolytes , 1977 .

[16]  G. C. Mather,et al.  Ionic conductivity of La(Sr)Ga(Mg,M)O3−δ (M=Ti, Cr, Fe, Co, Ni): effects of transition metal dopants , 2000 .

[17]  L. Heyne Electrochemistry of mixed ionic-electronic conductors , 1977 .

[18]  T. Grande,et al.  Mechanical properties of LaCoO 3 based ceramics , 2000 .

[19]  J. M. Serra,et al.  Preparation and properties of thin La1−xSrxCo1−yFeyO3−δ perovskitic membranes supported on tailored ceramic substrates , 2007 .

[20]  Tal Z. Sholklapper,et al.  LSM-Infiltrated Solid Oxide Fuel Cell Cathodes , 2006 .

[21]  Manfred Martin,et al.  Diffusion of Sr and Zr in BaTiO3 single crystals , 2008 .

[22]  J. R. Jurado,et al.  Oxygen ionic conductivity of Ti-containing strontium ferrite , 2000 .

[23]  Xiaoyao Tan,et al.  Modeling of air separation in a LSCF hollow-fiber membrane module , 2002 .

[24]  B. C. Peters,et al.  Advanced Ceramic Opportunities: A Review , 1989 .

[25]  X. Tan,et al.  Synthesis of strontium cerates-based perovskite ceramics via water-soluble complex precursor routes , 2002 .

[26]  Y. S. Lin,et al.  Equilibrium of oxygen sorption on perovskite-type lanthanum cobaltite sorbent , 2003 .

[27]  W. R. Moser,et al.  Dense Perovskite, La1‐xA′xFe1‐yCoyO3‐δ (A′= Ba, Sr, Ca), Membrane Synthesis, Applications, and Characterization , 2005 .

[28]  R. A. De Souza,et al.  A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+δ , 2000 .

[29]  M. Arjomand,et al.  The preparation and magnetic properties of ternary oxides ABO3 (A = alkaline earth metal, B = Ti, Zr, Mn, Fe, Co) and quaternary oxides ATi1−x (Zr1−x)BxO3 , 1978 .

[30]  N. Yamazoe,et al.  Development of Oxygen Semipermeable Membrane Using Mixed Conductive Perovskite-Type Oxides (Part 2) , 1989 .

[31]  H. Bouwmeester,et al.  Determination of oxygen nonstoichiometry and diffusivity in mixed conducting oxides by oxygen coulometric titration. 1: Chemical diffusion in La{sub 0.8}Sr{sub 0.2}CoO{sub 3-δ} , 1997 .

[32]  Jerry Y. S. Lin,et al.  Oxygen permeation through oxygen ionic or mixed-conducting ceramic membranes with chemical reactions , 2004 .

[33]  Ilenia Rossetti,et al.  Solvent nature effect in preparation of perovskites by flame pyrolysis: 2. Alcohols and alcohols + propionic acid mixtures , 2007 .

[34]  P. Porta,et al.  AFeO3 (A=La, Nd, Sm) and LaFe1−xMgxO3 perovskites: structural and redox properties , 2001 .

[35]  P. S. Maiya,et al.  Ceramic membrane reactor for converting methane to syngas , 1997 .

[36]  A. Kovalevsky,et al.  Oxygen permeability and Faradaic efficiency of Ce0.8Gd0.2O2–δ–La0.7Sr0.3MnO3–δ composites , 2001 .

[37]  G. K. Boreskov The Catalysis of Isotopic Exchange in Molecular Oxygen , 1965 .

[38]  D. Duprez,et al.  Mobility of Surface Species on Oxides. 1. Isotopic Exchange of 18O2 with 16O of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. Activation by Noble Metals. Correlation with Oxide Basicity† , 1996 .

[39]  Y. S. Lin,et al.  Structure and oxygen permeability of a dual-phase membrane , 2003 .

[40]  Chusheng Chen,et al.  Electrical conduction and oxygen transport in SrFeCo0.5Ox oxide membranes , 2000 .

[41]  B. Steele Oxygen ion conductors and their technological applications , 1992 .

[42]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[43]  X. Tan,et al.  Single-step fabrication of ceramic hollow fibers for oxygen permeation , 2006 .

[44]  N. Nachtrieb,et al.  The chemistry of imperfect crystals , 1973 .

[45]  K. Wiik,et al.  Thermal and chemical expansion of mixed conducting La0.5Sr0.5Fe1−xCoxO3−δ materials , 2006 .

[46]  R. Roy Aids in Hydrothermal Experimentation: II, Methods of Making Mixtures for Both “Dry” and “Wet” Phase Equilibrium Studies , 1956 .

[47]  Anthony R. West,et al.  Solid State Chemistry and its Applications , 1984 .

[48]  You Cong,et al.  Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen permeable membrane , 2002 .

[49]  A. Manthiram,et al.  Effect of La3+ doping on the perovskite-to-brownmillerite transformation in Sr1−xLaxCo0.8Fe0.2O3−δ (0≤x≤0.4) , 2004 .

[50]  J. Bassat,et al.  Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides , 2003 .

[51]  R. B. Poeppel,et al.  Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas , 1994 .

[52]  N. Yamazoe,et al.  Effect of Cation Substitution on the Oxygen Semipermeability of Perovskite-type Oxides , 1988 .

[53]  M. Verkerk,et al.  Oxygen Transfer on Substituted ZrO2, Bi2O3, and CeO2 Electrolytes with Platinum Electrodes II. A-C Impedance Study , 1983 .

[54]  William J. Weber,et al.  Electrochemical properties of mixed conducting perovskites La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y}Fe{sub y}O{sub 3{minus}{delta}} (M = Sr, Ba, Ca) , 1996 .

[55]  A. Feldhoff,et al.  A Cobalt‐Free Oxygen‐Permeable Membrane Based on the Perovskite‐Type Oxide Ba0.5Sr0.5Zn0.2Fe0.8O3–δ , 2005 .

[56]  S. Bandopadhyay,et al.  Room and elevated temperature strength of perovskite membrane tubes , 2003 .

[57]  M. Grätzel,et al.  Preparation of SrTiO3 by sol–gel techniques for the photoinduced production of H2 and surface peroxides from water , 1988 .

[58]  Paul Shewmon,et al.  Diffusion in Solids , 2016 .

[59]  Y. S. Lin,et al.  Oxidative coupling of methane in dense ceramic membrane reactor with high yields , 2002 .

[60]  R. Roy Multiple Ion Substitution in the Perovskite Lattice , 1954 .

[61]  K. Wiik,et al.  Crystal structure and thermal expansion of La1-xSrxFeO3-δ materials , 2005 .

[62]  H. Iwahara,et al.  High oxide ion conduction in sintered oxides of the system Bi2O3-WO3 , 1975 .

[63]  T. Ishihara,et al.  Mixed electronic–oxide ionic conductivity and oxygen permeating property of Fe-, Co- or Ni-doped LaGaO3 perovskite oxide , 2000 .

[64]  T. Rojo,et al.  Structure and impedance spectroscopy of La0.6Ca0.4Fe0.8Ni0.2O3−δ thin films grown by pulsed laser deposition , 2007 .

[65]  J. Caro,et al.  Production of high-purity oxygen by perovskite hollow fiber membranes swept with steam , 2006 .

[66]  M. Verkerk,et al.  High Oxygen Ion Conduction in Sintered Oxides of the $Bi_2O_3-Dy_2O_3$ System , 1981 .

[67]  J. Baumard,et al.  Mixed conduction and defect structure of ZrO/sub 2/-CeO/sub 2/-Y/sub 2/O/sub 3/ solid solutions , 1984 .

[68]  P. Han,et al.  Mixed (oxygen ion and p-type) conductivity in yttria-stabilized zirconia containing terbia , 1995 .

[69]  William J. Thomson,et al.  Oxygen permeation rates through ion-conducting perovskite membranes , 1999 .

[70]  Y. S. Lin,et al.  A semi-empirical equation for oxygen nonstoichiometry of perovskite-type ceramics , 2002 .

[71]  W. J. Dawson,et al.  Hydrothermal synthesis of advanced ceramic powders , 1988 .

[72]  H. Arashi,et al.  Oxygen permeability in ZrO2$z.sbnd;TiO2$z.sbnd;Y2O3 system , 1992 .

[73]  T. Nagai,et al.  Relationship between cation substitution and stability of perovskite structure in SrCoO3- δ-based mixed conductors , 2007 .

[74]  H. Iwahara,et al.  Mixed conduction and oxygen permeation in the substituted oxides for CaTiO3 , 1988 .

[75]  Noboru Yamazoe,et al.  OXYGEN PERMEATION THROUGH PEROVSKITE-TYPE OXIDES , 1985 .

[76]  A. Kovalevsky,et al.  Processing and characterization of La0.5Sr0.5FeO3-supported Sr1−xFe(Al)O3–SrAl2O4 composite membranes , 2006 .

[77]  J. Frye,et al.  Electrocatalytic cells for chemical reaction , 1992 .

[78]  Henricus J.M. Bouwmeester,et al.  Kinetic decomposition of La0.3Sr0.7CoO3−δ perovskite membranes during oxygen permeation , 1998 .

[79]  Zongping Shao,et al.  Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane , 2000 .

[80]  Wei Liu,et al.  Mixed oxygen ionic and electronic conduction in CaFe0.2Ti0.8O3−δ: a combined oxygen permeation and electrical conductivity study , 1999 .

[81]  T. Grande,et al.  Mechanical properties of LaCoO3 based ceramics , 2000 .

[82]  J. Caro,et al.  Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes , 2005 .

[83]  Y. S. Lin,et al.  Stability and Surface Catalytic Properties of Fluorite-Structured Yttria-Doped Bismuth Oxide under Reducing Environment☆ , 1999 .

[84]  Henk Verweij,et al.  Thickness dependence of oxygen permeation through erbia-stabilized bismuth oxide-silver composites , 1997 .

[85]  C. Wagner,et al.  Measurements on Galvanic Cells Involving Solid Electrolytes , 1957 .

[86]  N. Sakai,et al.  Oxygen permeation modelling of La1−yCayCrO3−δ , 1993 .

[87]  R. Roy,et al.  The major ternary structural families , 1974 .

[88]  K. Sasaki,et al.  Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite-type oxide , 2006 .

[89]  K. Goto,et al.  Solid State Electrochemistry and Its Applications to Sensors and Electronic Devices , 1988 .

[90]  Y. S. Lin,et al.  Analysis of oxidative coupling of methane in dense oxide membrane reactors , 1995 .

[91]  Meilin Liu,et al.  Transport properties of BaCe0.95Y0.05O3−α mixed conductors for hydrogen separation , 1997 .

[92]  Henricus J.M. Bouwmeester,et al.  Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides , 1994 .

[93]  V. Kovalchuk,et al.  Probing Defect Sites on the CeO2 Surface with Dioxygen , 2004 .

[94]  R. Cai,et al.  Investigation of ideal zirconium-doped perovskite-type ceramic membrane materials for oxygen separation , 2002 .

[95]  S. Badwal,et al.  Ceramic Membrane Technologies for Oxygen Separation , 2001 .

[96]  H. Verweij,et al.  Oxygen transport through La1-xSrxFeO3-(delta) membranes. I. Permeation in air/He gradients , 1995 .

[97]  Zongping Shao,et al.  Ba0.5Sr0.5Co0.8Fe0.2O3-δ ceramic hollow-fiber membranes for oxygen permeation , 2006 .

[98]  J. Ramsay,et al.  Ultrafine oxide powders prepared by electron beam evaporation , 1974 .

[99]  Ito Wataru,et al.  Oxygen separation from compressed air using a mixed conducting perovskite-type oxide membrane , 2007 .

[100]  R. Cai,et al.  Investigation on the structure stability and oxygen permeability of titanium-doped perovskite-type oxides of BaTi0.2CoxFe0.8−xO3−δ (x=0.2–0.6) , 2003 .

[101]  Per Kofstad,et al.  Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. , 1972 .

[102]  Ilenia Rossetti,et al.  Solvent nature effect in preparation of perovskites by flame-pyrolysis: 1. Carboxylic acids , 2007 .

[103]  E. Ivers-Tiffée,et al.  Kinetics of Oxygen Incorporation into SrTiO3 Investigated by Frequency-Domain Analysis , 2004 .

[104]  A. Purwanto,et al.  Formation of BaTiO3 nanoparticles from an aqueous precursor by flame-assisted spray pyrolysis , 2007 .

[105]  Y. Teraoka,et al.  Catalytic effects in oxygen permeation through mixed-conductive LSCF perovskite membranes , 2002 .

[106]  G. Migliavacca,et al.  Preparation by flame spray pyrolysis of ABO3±δ catalysts for the flameless combustion of methane , 2006 .

[107]  J. E. Bauerle Electrical Conduction in Thoria and Thoria—Yttria as a Function of Oxygen Pressure , 1966 .

[108]  Chusheng Chen,et al.  Oxygen permeation and stability of Zr0.8Y0.2O0.9‒La0.8Sr0.2CrO3-δ dual-phase composite , 2006 .

[109]  D. P. Fagg,et al.  Mixed conductivity, thermal expansion, and oxygen permeability of Ce(Pr,Zr)O2 − δ , 2005 .

[110]  E. Ivers-Tiffée,et al.  Kinetics of oxygen exchange in strontium titanate , 2003 .

[111]  Y. S. Lin,et al.  Beneficial effect of order–disorder phase transition on oxygen sorption properties of perovskite-type oxides , 2007 .

[112]  Bart A. van Hassel,et al.  Oxygen transfer across composite oxygen transport membranes , 2004 .

[113]  P. Conflant,et al.  Le diagramme des phases solides du systeme Bi2O3CaO , 1976 .

[114]  A. J. Burggraaf,et al.  Preparation of La0.3Sr0.7CoO3–δ perovskite by thermal decomposition of metal-EDTA complexes , 1998 .

[115]  G. Cao,et al.  Electrical conductivity and oxygen semipermeability of terbia and yttria stabilized zirconia , 1994 .

[116]  C. Jia,et al.  Atomic-Resolution Measurement of Oxygen Concentration in Oxide Materials , 2004, Science.

[117]  D. Jung,et al.  Nano-sized barium titanate powders with tetragonal crystal structure prepared by flame spray pyrolysis , 2008 .

[118]  I. Rossetti,et al.  Catalytic flameless combustion of methane over perovskites prepared by flame–hydrolysis , 2001 .

[119]  V. Kharton,et al.  Oxygen permeability of LaFe1−xNixO3−δ solid solutions , 1999 .

[120]  An improved analysis on kinetics of electrochemical vapor deposition , 1994 .

[121]  H. Kruidhof,et al.  Mixed conducting yttrium-barium-cobalt-oxide for high oxygen permeation , 1994 .

[122]  H. Iwahara,et al.  Electrical conduction in the sintered oxides of the system Bi2O3BaO , 1976 .

[123]  A. Feldhoff,et al.  Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes , 2007 .

[124]  D. Roy,et al.  Preparation of Very Reactive Ca2SiO4 Powder , 1977 .

[125]  D. P. Fagg,et al.  Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8-xPr0.2O2-δ, x = 0, 0.15, 0.2 , 2006 .

[126]  Y. S. Lin,et al.  Oxygen permeation and oxidative coupling of methane in yttria doped bismuth oxide membrane reactor , 2000 .

[127]  L. Singheiser,et al.  Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells (SOFC) , 2003 .

[128]  F. A. Kröger,et al.  Relations between the concentrations of imperfections in solids , 1958 .

[129]  K. Wiik,et al.  Kinetic demixing and decomposition of oxygen permeable membranes , 2006 .

[130]  R. Ross,et al.  Preparation of mixed oxides: a review , 1990 .

[131]  X. Tan,et al.  Oxygen production using dense ceramic hollow fiber membrane modules with different operating modes , 2007 .

[132]  P. A. Haas Gel processes for preparing ceramics and glasses , 1990 .

[133]  A. Kovalevsky,et al.  Oxygen permeability of La2Cu(Co)O4+δ solid solutions , 1999 .

[134]  P. Conflant,et al.  Etude structurale du conducteur anionique Bi0,765Sr0,235O1,383 , 1980 .

[135]  R. Whipple CXXXVIII. Concentration contours in grain boundary diffusion , 1954 .

[136]  L. Pederson,et al.  Mechanical Properties of La1‐xSrxCo0.2Fe0.8O3 Mixed‐Conducting Perovskites Made by the Combustion Synthesis Technique , 2000 .

[137]  A. Thursfield,et al.  Air separation using a catalytically modified mixed conducting ceramic hollow fibre membrane module , 2007 .

[138]  Y. S. Lin,et al.  Oxygen permeation through fluorite-type bismuth-yttrium-copper oxide membranes , 1997 .

[139]  S. Pratsinis,et al.  Thermal stability of flame-made zirconia-based mixed oxides , 2006 .

[140]  Javier Pérez-Ramírez,et al.  Lanthanum ferrite membranes in ammonia oxidation: Opportunities for ‘pocket-sized’ nitric acid plants , 2005 .

[141]  Haihui Wang,et al.  Novel cobalt-free oxygen permeable membrane. , 2004, Chemical communications.

[142]  J. Baumard,et al.  Oxygen semipermeability and electronic conductivity in calcia-stabilized zirconia , 1982 .

[143]  J. Frade,et al.  Characterization of mixed conductors by dc techniques. Part I: Theoretical solutions , 1994 .

[144]  Zongping Shao,et al.  Significant effects of sintering temperature on the performance of La0.6Sr0.4Co0.2Fe0.8O3- δ oxygen selective membranes , 2007 .

[145]  D. C. Hill,et al.  Oxygen Ion Mobility in Cubic Zr0.85Ca0.15O1.85 , 1959 .

[146]  J. C. Fisher Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion , 1951 .

[147]  Anthony R. West,et al.  Basic Solid State Chemistry , 1988 .

[148]  W. Haije,et al.  Phase stability and oxygen non-stoichiometry of SrCo0.8Fe0.2O3-δ measured by in situ neutron diffraction , 2006 .

[149]  A. Jacobson,et al.  Oxygen permeation studies of SrCo0.8Fe0.2O3 − δ , 1995 .

[150]  Vladislav V. Kharton,et al.  Perovskite-type oxides for high-temperature oxygen separation membranes , 1999 .

[151]  J. M. Serra,et al.  Thin-film proton BaZr0.85Y0.15O3 conducting electrolytes : Toward an intermediate-temperature solid oxide fuel cell alternative , 2007 .

[152]  Carlo U. Segre,et al.  Electrical Transport Properties and Defect Structure of SrFeCo0.5 O x , 1996 .

[153]  V. Kharton,et al.  Oxygen Ionic and Electronic Transport in LaGa1−xNixO3−δPerovskites , 1999 .

[154]  Junichiro Mizusaki,et al.  Measurement of oxygen permeability in CeO2 doped CSZ , 1995 .

[155]  H. Verweij,et al.  Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor , 1995 .

[156]  Haihui Wang,et al.  Development and Application of Oxygen Permeable Membrane in Selective Oxidation of Light Alkanes , 2005 .

[157]  R. Roy,et al.  Phase Equilibria in the System BaTiO3—CaTiO3 , 1955 .

[158]  Y. S. Lin,et al.  Oxidative coupling of methane on fluorite-structured samarium–yttrium–bismuth oxide , 2001 .

[159]  Harumi Yokokawa,et al.  Oxygen permeation modelling of perovskites , 1993 .

[160]  A. Manthiram,et al.  Synthesis, crystal chemistry, and oxygen permeation properties of LaSr3Fe3−xCoxO10 (0≤x≤1.5) , 2001 .

[161]  W. Jin,et al.  A dense oxygen separation membrane deriving from nanosized mixed conducting oxide , 2007 .

[162]  A. Manthiram,et al.  Role of perovskite phase on the oxygen permeation properties of the Sr4Fe6-XCoXO13+δ system , 2000 .

[163]  A. Kovalevsky,et al.  Mixed electronic and ionic conductivity of LaCo(M)O3 (M=Ga, Cr, Fe or Ni): II. Oxygen permeation through Cr- and Ni-substituted LaCoO3 , 1998 .

[164]  Tatsumi Ishihara,et al.  Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor , 1994 .

[165]  R. Roy,et al.  Experimental confirmation of major change of defect type with temperature and composition in ionic solids , 1965 .

[166]  P. Pacey,et al.  Mechanism of Oxygen Permeation Through Lime‐Stabilized Zirconia , 1985 .

[167]  Norio Miura,et al.  Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability , 1991 .

[168]  K. Kishio,et al.  Diffusion of oxide ion vacancies in perovskite-type oxides , 1988 .

[169]  Henricus J.M. Bouwmeester,et al.  Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides , 1993 .

[170]  E. F. Osborn,et al.  Phase Equilibria in the System CaO‐TiO2–SiO2 , 2006 .

[171]  C. Sheer,et al.  Some Characteristics of Arc Vaporized Submicron Particulates , 1964 .

[172]  Y. S. Lin,et al.  Electric transport and oxygen permeation properties of lanthanum cobaltite membranes synthesized by different methods , 2000 .

[173]  William J. Weber,et al.  Electrochemical Properties of Mixed Conducting Perovskites La1 − x M x Co1 − y Fe y O 3 − δ (M = Sr, Ba, Ca) , 1996 .

[174]  Sukhvinder P.S. Badwal,et al.  Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity , 1992 .

[175]  Y. S. Lin,et al.  Oxygen permeation through thin mixed-conducting solid oxide membranes , 1994 .

[176]  Y. S. Lin,et al.  Synthesis and oxygen permeation properties of ceramic-metal dual-phase membranes , 2000 .

[177]  J. E. Elshof,et al.  Activation of methane using solid oxide membranes , 1995 .

[178]  D. Duprez,et al.  Infrared Study of Oxygen Adsorption and Activation on Cerium–Zirconium Mixed Oxides , 2000 .

[179]  Zongping Shao,et al.  Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8−xO3−δ ceramic membranes , 2000 .

[180]  X. Tan,et al.  Theoretical analysis of ion permeation through mixed conducting membranes and its application to dehydrogenation reactions , 2000 .

[181]  N. Sakai,et al.  Cation transport behavior in SOFC cathode materials of La0.8Sr0.2CoO3 and La0.8Sr0.2FeO3 with perovskite structure , 2007 .

[182]  M. Verkerk,et al.  Oxygen Transfer on Substituted ZrO2, Bi2O3, and CeO2 Electrolytes with Platinum Electrodes. I. Electrode Resistance by D-C Polarization , 1983 .

[183]  X. Tan,et al.  Mixed Conducting Ceramics for Catalytic Membrane Processing , 2006 .

[184]  Meilin Liu,et al.  Oxygen reduction on LaMnO3-Based cathode materials in solid oxide fuel cells , 2007 .

[185]  H. Bouwmeester,et al.  Oxygen Semi-Permeability of Erbia-Stabilized Bismuth Oxide , 1991 .

[186]  Y. S. Lin,et al.  Oxidative coupling of methane on improved bismuth oxide membrane reactors , 2001 .

[187]  Zongping Shao,et al.  Efficient stabilization of cubic perovskite SrCoO3−δ by B-site low concentration scandium doping combined with sol–gel synthesis , 2008 .

[188]  J. Kilner,et al.  Measuring oxygen diffusion and oxygen surface exchange by conductivity relaxation , 2000 .

[189]  S. Haile,et al.  Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites , 2001 .

[190]  H. Fjellvåg,et al.  In situ XRD characterization of LaNiAlO model catalysts for CO2 reforming of methane , 1996 .

[191]  George R. Gavalas,et al.  Oxygen selective ceramic hollow fiber membranes , 2005 .

[192]  K. Nordheden,et al.  Increasing oxygen flux through a dense oxygen permeable membrane by photolithographic patterning of platinum , 2006 .

[193]  H. Bouwmeester,et al.  Chapter 10 Dense ceramic membranes for oxygen separation , 1996 .

[194]  Y. S. Lin,et al.  Chemical Stability and Its Improvement of Palladium-Based Metallic Membranes , 2004 .

[195]  J. Patterson Conduction Domains for Solid Electrolytes , 1971 .

[196]  K. Fujimoto,et al.  Oxide ion transport for selective oxidative coupling of methane with new membrane reactor , 1994 .

[197]  J. Pérez–Ramírez,et al.  Perovskite membranes in ammonia oxidation: towards process intensification in nitric acid manufacture. , 2005, Angewandte Chemie.

[198]  W. Thomson,et al.  Perovskite-type oxide membranes for the oxidative coupling of methane , 1997 .

[199]  H. Verweij,et al.  Oxygen transport through La1 − xSrxFeO3 − δ membranes II. Permeation in air/CO, CO2 gradients , 1996 .

[200]  G. Mairesse,et al.  Oxygen permeation in bismuth-based materials. Part I: Sintering and oxygen permeation fluxes , 2006 .

[201]  L. Smart,et al.  Solid State Chemistry: An Introduction, Third Edition , 1995 .

[202]  T. Kutty,et al.  Preparation of CaTiO3 fine powders by the hydrothermal method , 1987 .

[203]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .

[204]  D. P. Fagg,et al.  High oxygen permeability in fluorite-type Ce0.8Pr0.2O2−δ via the use of sintering aids , 2007 .

[205]  T. Grande,et al.  Mechanical properties of LaFeO3 ceramics , 2005 .

[206]  B. Ma,et al.  Oxygen nonstoichiometry in mixed-conducting SrFeCo0.5Ox , 1997 .

[207]  J. M. Serra,et al.  Nano-structuring of solid oxide fuel cells cathodes , 2006 .

[208]  W. Jin,et al.  Influence of powder synthesis methods on microstructure and oxygen permeation performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite-type membranes , 2003 .

[209]  A. Kovalevsky,et al.  Oxygen permeation through Sr(Ln)CoO3−δ (Ln=La, Nd, Sm, Gd) ceramic membranes , 1998 .

[210]  X. Tan,et al.  METHANE COUPLING USING CATALYTIC MEMBRANE REACTORS , 2001 .

[211]  Y. S. Lin,et al.  Oxygen permeation through thin zirconia/yttria membranes prepared by EVD , 1997 .

[212]  X. Tan,et al.  Mixed conducting ceramic hollow‐fiber membranes for air separation , 2005 .

[213]  Henricus J.M. Bouwmeester,et al.  Dense Ceramic Membranes for Oxygen Separation , 1997, The CRC Handbook of SOLID STATE Electrochemistry.

[214]  Ren Yufang,et al.  Oxygen permeating properties of the mixed conducting membranes without cobalt , 1998 .

[215]  Chusheng Chen,et al.  Oxygen permeation through (Bi2O3)0.74(SrO)0.26–Ag (40% v/o) composite , 2001 .

[216]  Yuehe Lin,et al.  Electrochemical vapor deposition synthesis and oxygen permeation properties of dense zirconia–yttria–ceria membranes , 1997 .

[217]  L. Cot,et al.  Fundamentals of inorganic membrane science and technology , 1996 .

[218]  M. Pouchard,et al.  Application of Density Functional Theory to the Modeling of the Mixed Ionic and Electronic Conductor La2NiO4+δ: Lattice Relaxation, Oxygen Mobility, and Energetics of Frenkel Defects , 2005 .

[219]  N. Yamazoe,et al.  Oxygen semipermeability of mixed-conductive oxide thick-film prepared by slip casting , 1995 .

[220]  Yuehe Lin,et al.  Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane , 1998 .

[221]  P. Björnbom,et al.  Transport number determination by the concentration-cell/open-circuit voltage method for oxides with mixed electronic, ionic and protonic conductivity , 1995 .

[222]  H. Verweij,et al.  Oxygen permeation through oxygen ion oxide-noble metal dual phase composites , 1996 .

[223]  Y. S. Lin,et al.  Selective oxidation of ethane to ethylene in a dense tubular membrane reactor , 2002 .

[224]  A. Corma,et al.  CO oxidation catalyzed by supported gold: cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. , 2005, Angewandte Chemie.