Large-Scale Production of Microcrystals and Precipitates of Proteins and Their Complexes

The optimum conditions for the formation of plate-like and urchin-like microcrystals of biomolecules and their transfer to rotors for solid-state NMR spectroscopy depend on a variety of factors, of which minimizing the manipulation of the microcrystals and storing the sample for several months at 277 K (4 degrees C) play an important role. Three biological systems were investigated: Hen Egg-White (HEW) lysozyme (129 residues), the lengthened C-terminal domain (LCter) of Human centrin 2 (89 residues), and the complex between the C-terminal domain (Cter) of Human centrin 2 (79 residues) and the P17-XPC peptide (17 residues).

[1]  B. Meier,et al.  Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion , 2011, Journal of biomolecular NMR.

[2]  R. Riek,et al.  Protocols for the Sequential Solid‐State NMR Spectroscopic Assignment of a Uniformly Labeled 25 kDa Protein: HET‐s(1‐227) , 2010, Chembiochem : a European journal of chemical biology.

[3]  C. Rienstra,et al.  Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide-bond-forming enzyme DsbA. , 2010, Journal of molecular biology.

[4]  Y. Zhang,et al.  Resonance assignment and three-dimensional structure determination of a human alpha-defensin, HNP-1, by solid-state NMR. , 2010, Journal of molecular biology.

[5]  B. Meier,et al.  Characterization of different water pools in solid-state NMR protein samples , 2009, Journal of biomolecular NMR.

[6]  G. Bodenhausen,et al.  Low-power decoupling at high spinning frequencies in high static fields. , 2009, Journal of magnetic resonance.

[7]  I. Bertini,et al.  Paramagnetic shifts in solid-state NMR of proteins to elicit structural information , 2008, Proceedings of the National Academy of Sciences.

[8]  A. Tokmakoff,et al.  Amide I two-dimensional infrared spectroscopy of proteins. , 2008, Accounts of chemical research.

[9]  Benjamin J. Wylie,et al.  Crystal polymorphism of protein GB1 examined by solid-state NMR spectroscopy and X-ray diffraction. , 2007, The journal of physical chemistry. B.

[10]  S. Miron,et al.  Structural, thermodynamic, and cellular characterization of human centrin 2 interaction with xeroderma pigmentosum group C protein. , 2007, Journal of molecular biology.

[11]  C. Jaroniec,et al.  13C and 15N chemical shift assignments and secondary structure of the B3 immunoglobulin-binding domain of streptococcal protein G by magic-angle spinning solid-state NMR spectroscopy , 2007, Biomolecular NMR assignments.

[12]  Chan‐Wha Kim,et al.  Characterization of human insulin microcrystals and their absorption enhancement by protease inhibitors in rat lungs. , 2007, International journal of pharmaceutics.

[13]  D. Flot,et al.  Expression, crystallization and X-ray data collection from microcrystals of the extracellular domain of the human inhibitory receptor expressed on myeloid cells IREM-1. , 2007, Acta crystallographica. Section F, Structural biology and crystallization communications.

[14]  I. Bertini,et al.  Solid-state NMR spectroscopy of a paramagnetic protein: assignment and study of human dimeric oxidized CuII-ZnII superoxide dismutase (SOD). , 2007, Angewandte Chemie.

[15]  G. Bodenhausen,et al.  Slow backbone dynamics of the C-terminal fragment of human centrin 2 in complex with a target peptide probed by cross-correlated relaxation in multiple-quantum NMR spectroscopy. , 2006, Biochemistry.

[16]  F. Dahlquist,et al.  Comparison of the internal dynamics of globular proteins in the microcrystalline and rehydrated lyophilized states. , 2006, Biochimica et biophysica acta.

[17]  O. Pongs,et al.  Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR , 2006, Nature.

[18]  M. Baldus Solid-state NMR spectroscopy: molecular structure and organization at the atomic level. , 2006, Angewandte Chemie.

[19]  M. Blackledge,et al.  Quantitative analysis of backbone dynamics in a crystalline protein from nitrogen-15 spin-lattice relaxation. , 2005, Journal of the American Chemical Society.

[20]  M. Manning,et al.  Use of infrared spectroscopy to monitor protein structure and stability , 2005, Expert review of proteomics.

[21]  Benjamin J. Wylie,et al.  Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. , 2005, Journal of the American Chemical Society.

[22]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[23]  A. McDermott,et al.  Structural and dynamic studies of proteins by solid-state NMR spectroscopy: rapid movement forward. , 2004, Current opinion in structural biology.

[24]  Rachel W. Martin,et al.  Assignments of carbon NMR resonances for microcrystalline ubiquitin. , 2004, Journal of the American Chemical Society.

[25]  A. Margolin,et al.  Protein crystals for the delivery of biopharmaceuticals , 2004, Expert opinion on biological therapy.

[26]  Nicolas Giraud,et al.  Solid state NMR sequential resonance assignments and conformational analysis of the 2×10.4 kDa dimeric form of the Bacillus subtilis protein Crh , 2003, Journal of biomolecular NMR.

[27]  Kurt W Zilm,et al.  Preparation of protein nanocrystals and their characterization by solid state NMR. , 2003, Journal of magnetic resonance.

[28]  A. Popescu,et al.  Xeroderma Pigmentosum Group C Protein Possesses a High Affinity Binding Site to Human Centrin 2 and Calmodulin* , 2003, Journal of Biological Chemistry.

[29]  J. Cox,et al.  C-terminal half of human centrin 2 behaves like a regulatory EF-hand domain. , 2003, Biochemistry.

[30]  M. Schubert,et al.  Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy , 2002, Nature.

[31]  R. Withers,et al.  Low-conductivity buffers for high-sensitivity NMR measurements. , 2002, Journal of the American Chemical Society.

[32]  E. Landau,et al.  Spectroscopic Characterization of Bacteriorhodopsin's L-intermediate in 3D Crystals Cooled to 170 K¶ , 2001, Photochemistry and photobiology.

[33]  B. Shenoy,et al.  Stability of crystalline proteins. , 2001, Biotechnology and bioengineering.

[34]  K. Sugasawa,et al.  Centrosome Protein Centrin 2/Caltractin 1 Is Part of the Xeroderma Pigmentosum Group C Complex That Initiates Global Genome Nucleotide Excision Repair* , 2001, The Journal of Biological Chemistry.

[35]  Lal,et al.  Atomic force microscopy of the three-dimensional crystal of membrane protein, OmpC porin. , 2000, Colloids and surfaces. B, Biointerfaces.

[36]  J. Cox,et al.  Cation‐ and peptide‐binding properties of human centrin 2 , 2000, FEBS letters.

[37]  H. Oschkinat,et al.  Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the alpha-spectrin SH3 domain. , 2000, Journal of magnetic resonance.

[38]  Rachel W. Martin,et al.  Partial NMR assignments for uniformly (13C, 15N)-enriched BPTI in the solid state , 2000, Journal of biomolecular NMR.

[39]  Lyndon Emsley,et al.  Through-Bond Carbon−Carbon Connectivities in Disordered Solids by NMR , 1999 .

[40]  E. Snell,et al.  The effect of temperature and solution pH on the nucleation of tetragonal lysozyme crystals. , 1999, Biophysical journal.

[41]  Yuqin Dai,et al.  Confocal Fluorescence Microscopic Imaging for Investigating the Analyte Distribution in MALDI Matrices. , 1996, Analytical chemistry.

[42]  C. Pace,et al.  How to measure and predict the molar absorption coefficient of a protein , 1995, Protein science : a publication of the Protein Society.

[43]  N E Chayen,et al.  Control of nucleation in the crystallization of lysozyme , 1993, Protein science : a publication of the Protein Society.

[44]  A. Danchin,et al.  Isolation and characterization of catalytic and calmodulin-binding domains of Bordetella pertussis adenylate cyclase. , 1991, European journal of biochemistry.

[45]  P. V. von Hippel,et al.  Calculation of protein extinction coefficients from amino acid sequence data. , 1989, Analytical biochemistry.

[46]  N. M. Tooney,et al.  Microcrystals of a Modified Fibrinogen , 1972, Nature.

[47]  H. Edelhoch,et al.  Spectroscopic determination of tryptophan and tyrosine in proteins. , 1967, Biochemistry.

[48]  E. Hahn,et al.  Nuclear Double Resonance in the Rotating Frame , 1962 .

[49]  David C. Richardson Macromolecular Crystallography , 2012, NATO Science for Peace and Security Series A: Chemistry and Biology.

[50]  Kristiina Takkinen,et al.  Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. , 2008 .

[51]  B. Chait,et al.  Mass spectrometry as a tool for protein crystallography. , 2001, Annual review of biophysics and biomolecular structure.

[52]  R D Appel,et al.  Protein identification and analysis tools in the ExPASy server. , 1999, Methods in molecular biology.