PlantMWpIDB: a database for the molecular weight and isoelectric points of the plant proteomes

[1]  A. K. Mishra,et al.  Virtual 2-D map of the fungal proteome , 2021, Scientific Reports.

[2]  S. Bader-Mittermaier,et al.  Electrophoretic characterization, amino acid composition and solubility properties of Macauba (Acrocomia aculeata L.) kernel globulins , 2021 .

[3]  Derek S. Lundberg,et al.  Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) for the Analysis of Protein Oligomers in Plants. , 2020, Current protocols in plant biology.

[4]  T. Low,et al.  The evolution of two-dimensional gel electrophoresis - from proteomics to emerging alternative applications. , 2019, Journal of chromatography. A.

[5]  Bo Su,et al.  PlantMP: a database for moonlighting plant proteins , 2019, Database J. Biol. Databases Curation.

[6]  A. Hashem,et al.  The molecular mass and isoelectric point of plant proteomes , 2019, bioRxiv.

[7]  O. Frings,et al.  SubCellBarCode: Proteome-wide Mapping of Protein Localization and Relocalization. , 2019, Molecular cell.

[8]  Hanhong Bae,et al.  Novel Genomic and Evolutionary Perspective of Cyanobacterial tRNAs , 2017, Front. Genet..

[9]  Silvana Rossetto,et al.  Protein charge distribution in proteomes and its impact on translation , 2017, PLoS Comput. Biol..

[10]  Lukasz P. Kozlowski,et al.  Proteome-pI: proteome isoelectric point database , 2016, Nucleic Acids Res..

[11]  L. Kozlowski IPC – Isoelectric Point Calculator , 2016, Biology Direct.

[12]  Ying Ju,et al.  Human Protein Subcellular Localization with Integrated Source and Multi-label Ensemble Classifier , 2016, Scientific Reports.

[13]  David W. Reid,et al.  Diversity and selectivity in mRNA translation on the endoplasmic reticulum , 2015, Nature Reviews Molecular Cell Biology.

[14]  Chittibabu Guda,et al.  LocSigDB: a database of protein localization signals , 2015, Database J. Biol. Databases Curation.

[15]  Darren R. Flower,et al.  PIP-DB: the Protein Isoelectric Point database , 2015, Bioinform..

[16]  Sun-Yuan Kung,et al.  mGOASVM: Multi-label protein subcellular localization based on gene ontology and support vector machines , 2012, BMC Bioinformatics.

[17]  R. Nussinov,et al.  Allosteric post-translational modification codes. , 2012, Trends in biochemical sciences.

[18]  Bin Han,et al.  Towards posttranslational modification proteome of royal jelly. , 2012, Journal of proteomics.

[19]  R. Pappu,et al.  N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins. , 2012, Journal of molecular biology.

[20]  B. Chait,et al.  Quantitative chemical proteomics approach to identify post-translational modification-mediated protein-protein interactions. , 2012, Journal of the American Chemical Society.

[21]  A. Aitken Post-translational modification of 14-3-3 isoforms and regulation of cellular function. , 2011, Seminars in cell & developmental biology.

[22]  L. Miguet,et al.  Proteins of Diverse Function and Subcellular Location Are Lysine Acetylated in Arabidopsis1[W][OA] , 2011, Plant Physiology.

[23]  Burkhard Rost,et al.  LocDB: experimental annotations of localization for Homo sapiens and Arabidopsis thaliana , 2010, Nucleic Acids Res..

[24]  N. Sonenberg,et al.  Mechanisms governing the control of mRNA translation , 2010, Physical biology.

[25]  K. Ha,et al.  Transglutaminase 2: a multi-functional protein in multiple subcellular compartments , 2010, Amino Acids.

[26]  E. Unanue,et al.  Targeting proteins to distinct subcellular compartments reveals unique requirements for MHC class I and II presentation , 2009, Proceedings of the National Academy of Sciences.

[27]  P. Lansbury,et al.  The first N-terminal amino acids of alpha-synuclein are essential for alpha-helical structure formation in vitro and membrane binding in yeast. , 2009, Journal of molecular biology.

[28]  Qi Sun,et al.  PPDB, the Plant Proteomics Database at Cornell , 2008, Nucleic Acids Res..

[29]  Fengmin Li,et al.  Predicting protein subcellular location using Chou's pseudo amino acid composition and improved hybrid approach. , 2008, Protein and peptide letters.

[30]  T. Ochsenreiter,et al.  Alternative mRNA Editing in Trypanosomes Is Extensive and May Contribute to Mitochondrial Protein Diversity , 2008, PloS one.

[31]  Birgit Eisenhaber,et al.  Posttranslational modifications and subcellular localization signals: indicators of sequence regions without inherent 3D structure? , 2007, Current protein & peptide science.

[32]  R. Casadio,et al.  eSLDB: eukaryotic subcellular localization database , 2007, Nucleic Acids Res..

[33]  Jeffrey E Kudlow,et al.  Post‐translational modification by O‐GlcNAc: Another way to change protein function , 2006, Journal of cellular biochemistry.

[34]  Paul D. Shaw,et al.  Arabidopsis nucleolar protein database (AtNoPDB) , 2004, Nucleic Acids Res..

[35]  Kevin W Plaxco,et al.  Contact order revisited: Influence of protein size on the folding rate , 2003, Protein science : a publication of the Protein Society.

[36]  Minoru Kanehisa,et al.  Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs , 2003, Bioinform..

[37]  T. Takagi,et al.  Assessment of prediction accuracy of protein function from protein–protein interaction data , 2001, Yeast.

[38]  M. Ehrenberg,et al.  A post‐translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation , 2000, The EMBO journal.

[39]  Y. C. Wu,et al.  The dissociation constant of amino acids by the conductimetric method: I. pK1 of MOPSO-HCl at 25°C , 1992 .

[40]  W. J. Lucas,et al.  Movement Protein of Tobacco Mosaic Virus Modifies Plasmodesmatal Size Exclusion Limit , 1989, Science.

[41]  Gunnar von Heijne,et al.  Net N-C charge imbalance may be important for signal sequence function in bacteria , 1986 .

[42]  J. Floros,et al.  Post-translational modification of the major human surfactant-associated proteins. , 1986, The Biochemical journal.

[43]  G. Heijne Analysis of the distribution of charged residues in the N‐terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. , 1984, The EMBO journal.

[44]  OUP accepted manuscript , 2021, Nucleic Acids Research.

[45]  H. Erickson Kinetics of protein–protein association and dissociation , 2019, Principles of Protein–Protein Association.

[46]  G von Heijne,et al.  Net N-C charge imbalance may be important for signal sequence function in bacteria. , 1986, Journal of molecular biology.

[47]  G. von Heijne Analysis of the distribution of charged residues in the N-terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. , 1984, The EMBO journal.