Proximal Point Algorithms on Hadamard Manifolds: Linear Convergence and Finite Termination

In the present paper, we consider inexact proximal point algorithms for finding singular points of multivalued vector fields on Hadamard manifolds. The rate of convergence is shown to be linear under the mild assumption of metric subregularity. Furthermore, if the sequence of parameters associated with the iterative scheme converges to $0$, then the convergence rate is superlinear. At the same time, the finite termination of the inexact proximal point algorithm is also provided under a weak sharp minima-like condition. Applications to optimization problems are provided. Some of our results are new even in Euclidean spaces, while others improve and/or extend some known results in Euclidean spaces. As a matter of fact, in the case of exact proximal point algorithm, our results improve the corresponding results in [G. C. Bento and J. X. Cruz Neto, Optim., 63 (2014), pp. 1281--1288]. Finally, several examples are provided to illustrate that our results are applicable while the corresponding results in the Hil...

[1]  Chong Li,et al.  Mathematics 4-1-2009 Weak Sharp Minima on Riemannian Manifolds , 2014 .

[2]  P. Grohs,et al.  Nonsmooth trust region algorithms for locally Lipschitz functions on Riemannian manifolds , 2016 .

[3]  J. Burke,et al.  Weak sharp minima revisited Part I: basic theory , 2002 .

[4]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[5]  Chong Li,et al.  Variational Inequalities for Set-Valued Vector Fields on Riemannian Manifolds: Convexity of the Solution Set and the Proximal Point Algorithm , 2012, SIAM J. Control. Optim..

[6]  R. Adler,et al.  Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .

[7]  Chong Li,et al.  Newton's method for sections on Riemannian manifolds , 2008 .

[8]  Osman Güler,et al.  New Proximal Point Algorithms for Convex Minimization , 1992, SIAM J. Optim..

[9]  O. P. Ferreira,et al.  Proximal Point Algorithm On Riemannian Manifolds , 2002 .

[10]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[11]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[12]  Boris S. Mordukhovich,et al.  Enhanced metric regularity and Lipschitzian properties of variational systems , 2011, J. Glob. Optim..

[13]  Chong Li,et al.  Monotone vector fields and the proximal point algorithm on Hadamard manifolds , 2009 .

[14]  Michael J. Todd,et al.  On the Riemannian Geometry Defined by Self-Concordant Barriers and Interior-Point Methods , 2002, Found. Comput. Math..

[15]  Hédy Attouch,et al.  On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..

[16]  Steven Thomas Smith,et al.  Optimization Techniques on Riemannian Manifolds , 2014, ArXiv.

[17]  Chong Li,et al.  Kantorovich's theorems for Newton's method for mappings and optimization problems on Lie groups , 2011 .

[18]  Philipp Grohs,et al.  ε-subgradient algorithms for locally lipschitz functions on Riemannian manifolds , 2015, Advances in Computational Mathematics.

[19]  Boris S. Mordukhovich,et al.  Metric regularity and Lipschitzian stability of parametric variational systems , 2010 .

[20]  F. J. A. Artacho,et al.  Characterization of Metric Regularity of Subdifferentials , 2008 .

[21]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[22]  Jinhua Wang,et al.  Uniqueness of the singular points of vector fields on Riemannian manifolds under the gamma-condition , 2006, J. Complex..

[23]  Kerstin Vogler,et al.  Nonlinear Functional Analysis And Applications , 2016 .

[24]  I. Holopainen Riemannian Geometry , 1927, Nature.

[25]  M. Ferris,et al.  Weak sharp minima in mathematical programming , 1993 .

[26]  Sandor Nemeth Monotonicity of the Complementary Vector Field of a Nonexpansive Map , 1999 .

[27]  J.-C. Yao,et al.  Finite Termination of Inexact Proximal Point Algorithms in Hilbert Spaces , 2014, Journal of Optimization Theory and Applications.

[28]  Li Chong Wang Jinhua,et al.  Convergence of the Newton method and uniqueness of zeros of vector fields on Riemannian manifolds , 2005 .

[29]  R. Henrion,et al.  On calmness conditions in convex bilevel programming , 2011 .

[30]  Daniel Azagra Rueda,et al.  Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds , 2005 .

[31]  Chong Li,et al.  Newton's method on Riemannian manifolds: Smale's point estimate theory under the γ-condition , 2006 .

[32]  G. Minty On the monotonicity of the gradient of a convex function. , 1964 .

[33]  P. Priouret,et al.  Newton's method on Riemannian manifolds: covariant alpha theory , 2002, math/0209096.

[34]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[35]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[36]  Yu. S. Ledyaev,et al.  Nonsmooth analysis on smooth manifolds , 2007 .

[37]  Helmut Gfrerer,et al.  First Order and Second Order Characterizations of Metric Subregularity and Calmness of Constraint Set Mappings , 2011, SIAM J. Optim..

[38]  Chong Li,et al.  Convergence analysis of inexact proximal point algorithms on Hadamard manifolds , 2015, J. Glob. Optim..

[39]  G. C. Bento,et al.  Finite termination of the proximal point method for convex functions on Hadamard manifolds , 2012, 1205.4763.

[40]  Orizon Pereira Ferreira,et al.  Kantorovich's Theorem on Newton's Method in Riemannian Manifolds , 2002, J. Complex..

[41]  Wen Huang,et al.  A Broyden Class of Quasi-Newton Methods for Riemannian Optimization , 2015, SIAM J. Optim..

[42]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[43]  Gabriele Steidl,et al.  A Second Order Nonsmooth Variational Model for Restoring Manifold-Valued Images , 2015, SIAM J. Sci. Comput..

[44]  Lei-Hong Zhang,et al.  Riemannian Newton Method for the Multivariate Eigenvalue Problem , 2010, SIAM J. Matrix Anal. Appl..

[45]  Xi Yin Zheng,et al.  Metric Subregularity and Calmness for Nonconvex Generalized Equations in Banach Spaces , 2010, SIAM J. Optim..

[46]  João X. da Cruz Neto,et al.  Convex- and Monotone-Transformable Mathematical Programming Problems and a Proximal-Like Point Method , 2006, J. Glob. Optim..

[47]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[48]  F. Luque Asymptotic convergence analysis of the proximal point algorithm , 1984 .

[49]  Asen L. Dontchev,et al.  Regularity and Conditioning of Solution Mappings in Variational Analysis , 2004 .

[50]  Chong Li,et al.  Existence of solutions for variational inequalities on Riemannian manifolds , 2009 .

[51]  René Henrion,et al.  Calmness of constraint systems with applications , 2005, Math. Program..

[52]  Alexander D. Ioffe,et al.  On Metric and Calmness Qualification Conditions in Subdifferential Calculus , 2008 .

[53]  Xi Yin Zheng,et al.  Metric Subregularity and Constraint Qualifications for Convex Generalized Equations in Banach Spaces , 2007, SIAM J. Optim..

[54]  F. Browder Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces , 1965 .

[55]  Orizon P. Ferreira,et al.  Monotone point-to-set vector fields. , 2000 .

[56]  Tamás Rapcsák,et al.  Smooth nonlinear optimization in Rn.. (Nonconvex optimization and its applications, 19.) , 1997 .

[57]  Jefferson G. Melo,et al.  Subgradient Method for Convex Feasibility on Riemannian Manifolds , 2011, Journal of Optimization Theory and Applications.

[58]  C. Udriste,et al.  Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .