The many faces of small nucleolar RNAs F

18 19 20 21 22 23 24 25 26 27 28 Article history: Received 28 February 2014 Received in revised form 7 April 2014 Accepted 8 April 2014 Available online xxxx

[1]  A. Nordgren,et al.  Small mosaic deletion encompassing the snoRNAs and SNURF‐SNRPN results in an atypical Prader–Willi syndrome phenotype , 2014, American journal of medical genetics. Part A.

[2]  Peter F Stadler,et al.  Matching of Soulmates: coevolution of snoRNAs and their targets. , 2014, Molecular biology and evolution.

[3]  Hui Jiang,et al.  Box C/D Small Nucleolar RNA (snoRNA) U60 Regulates Intracellular Cholesterol Trafficking* , 2013, The Journal of Biological Chemistry.

[4]  J. Pérez-Ortín,et al.  Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression. , 2013, Journal of molecular biology.

[5]  L. Petrucelli,et al.  Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion , 2013, Science Translational Medicine.

[6]  Peter Tsang,et al.  R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation , 2013, Proceedings of the National Academy of Sciences.

[7]  P. Tsang,et al.  A Prader–Willi locus lncRNA cloud modulates diurnal genes and energy expenditure , 2013, Human molecular genetics.

[8]  Kui Li,et al.  Systematic identification and characterization of porcine snoRNAs: structural, functional and developmental insights. , 2013, Animal genetics.

[9]  J. Chapman,et al.  Snord 3A: A Molecular Marker and Modulator of Prion Disease Progression , 2013, PloS one.

[10]  Yuehua Wu,et al.  Long noncoding RNAs with snoRNA ends. , 2012, Molecular cell.

[11]  S. Tobet,et al.  Hypothalamic expression of snoRNA Snord116 is consistent with a link to the hyperphagia and obesity symptoms of Prader–Willi syndrome , 2012, International Journal of Developmental Neuroscience.

[12]  G. Lofland,et al.  Noncoding RNA Expression in Myocardium From Infants With Tetralogy of Fallot , 2012, Circulation. Cardiovascular genetics.

[13]  B. Strukelj,et al.  Exploiting microRNAs for cell engineering and therapy. , 2012, Biotechnology advances.

[14]  M. Bohnsack,et al.  The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA , 2012, Wiley interdisciplinary reviews. RNA.

[15]  K. Collins,et al.  An Enhanced H/ACA RNP Assembly Mechanism for Human Telomerase RNA , 2012, Molecular and Cellular Biology.

[16]  J. Cavaille,et al.  The SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader–Willi locus generate canonical box C/D snoRNAs , 2012, Nucleic acids research.

[17]  A. Tonevitsky,et al.  Passing the anaerobic threshold is associated with substantial changes in the gene expression profile in white blood cells , 2012, European Journal of Applied Physiology.

[18]  Michelle S. Scott,et al.  From snoRNA to miRNA: Dual function regulatory non-coding RNAs , 2011, Biochimie.

[19]  Michael Q. Zhang,et al.  Direct cloning of double-stranded RNAs from RNase protection analysis reveals processing patterns of C/D box snoRNAs and provides evidence for widespread antisense transcript expression , 2011, Nucleic acids research.

[20]  B. Rogelj,et al.  Biology and applications of small nucleolar RNAs , 2011, Cellular and Molecular Life Sciences.

[21]  M. Behlke,et al.  Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. , 2011, Cell metabolism.

[22]  E. Blackburn,et al.  Telomerase: an RNP enzyme synthesizes DNA. , 2011, Cold Spring Harbor perspectives in biology.

[23]  A. Yu,et al.  Functions and mechanisms of spliceosomal small nuclear RNA pseudouridylation , 2011, Wiley interdisciplinary reviews. RNA.

[24]  Michelle S. Scott,et al.  Identification of human miRNA precursors that resemble box C/D snoRNAs , 2011, Nucleic acids research.

[25]  Shuling Guo,et al.  Efficient and specific knockdown of small non-coding RNAs in mammalian cells and in mice , 2010, Nucleic acids research.

[26]  Markus Brameier,et al.  Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs , 2010, Nucleic Acids Res..

[27]  B. Roth,et al.  Mice with altered serotonin 2C receptor RNA editing display characteristics of Prader–Willi syndrome , 2010, Neurobiology of Disease.

[28]  Martin Löwer,et al.  Digital Genome-Wide ncRNA Expression, Including SnoRNAs, across 11 Human Tissues Using PolyA-Neutral Amplification , 2010, PloS one.

[29]  A. Hüttenhofer,et al.  Identification of novel ribonucleo-protein complexes from the brain-specific snoRNA MBII-52. , 2010, RNA.

[30]  J. Rosenfeld,et al.  Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader–Willi syndrome , 2010, European Journal of Human Genetics.

[31]  Mihaela Zavolan,et al.  The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. , 2010, Human molecular genetics.

[32]  John Karijolich,et al.  Spliceosomal snRNA modifications and their function , 2010, RNA biology.

[33]  J. Cavaille,et al.  Long nuclear-retained non-coding RNAs and allele-specific higher-order chromatin organization at imprinted snoRNA gene arrays , 2010, Development.

[34]  J. Rousset,et al.  Nucleotide modifications in three functionally important regions of the Saccharomyces cerevisiae ribosome affect translation accuracy , 2009, Nucleic acids research.

[35]  A. Hüttenhofer,et al.  Methodological obstacles in knocking down small noncoding RNAs. , 2009, RNA.

[36]  Geoffrey J. Barton,et al.  Human miRNA Precursors with Box H/ACA snoRNA Features , 2009, PLoS Comput. Biol..

[37]  M. Fournier,et al.  Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. , 2009, RNA.

[38]  J. LaSalle,et al.  Imprinting regulates mammalian snoRNA-encoding chromatin decondensation and neuronal nucleolar size , 2009, Human molecular genetics.

[39]  Thoru Pederson,et al.  MicroRNAs with a nucleolar location. , 2009, RNA.

[40]  J. Mattick,et al.  Small RNAs derived from snoRNAs. , 2009, RNA.

[41]  L. Wilkinson,et al.  Loss of the imprinted snoRNA mbii-52 leads to increased 5htr2c pre-RNA editing and altered 5HT2CR-mediated behaviour. , 2009, Human molecular genetics.

[42]  N. Rajewsky,et al.  A human snoRNA with microRNA-like functions. , 2008, Molecular cell.

[43]  P. Schattner,et al.  Functionality and substrate specificity of human box H/ACA guide RNAs. , 2008, RNA.

[44]  Ashesh A. Saraiya,et al.  snoRNA, a Novel Precursor of microRNA in Giardia lamblia , 2008, PLoS pathogens.

[45]  M. Fournier,et al.  Mis-targeted methylation in rRNA can severely impair ribosome synthesis and activity , 2008, RNA biology.

[46]  C. Hammell The microRNA-argonaute complex: A platform for mRNA modulation , 2008, RNA biology.

[47]  Michael P. Snyder,et al.  Genome-Wide Occupancy of SREBP1 and Its Partners NFY and SP1 Reveals Novel Functional Roles and Combinatorial Regulation of Distinct Classes of Genes , 2008, PLoS genetics.

[48]  A. Sandelin,et al.  Hidden layers of human small RNAs , 2008, BMC Genomics.

[49]  U. Francke,et al.  SnoRNA Snord116 (Pwcr1/MBII-85) Deletion Causes Growth Deficiency and Hyperphagia in Mice , 2008, PloS one.

[50]  Valery Shepelev,et al.  snoTARGET shows that human orphan snoRNA targets locate close to alternative splice junctions. , 2008, Gene.

[51]  M. Fournier,et al.  rRNA modifications in an intersubunit bridge of the ribosome strongly affect both ribosome biogenesis and activity. , 2007, Molecular cell.

[52]  Phillip A. Sharp,et al.  microRNAs: A Safeguard against Turmoil? , 2007, Cell.

[53]  S. Stamm,et al.  The snoRNA HBII-52 Regulates Alternative Splicing of the Serotonin Receptor 2C , 2006, Science.

[54]  Edouard Bertrand,et al.  ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs , 2005, The Journal of cell biology.

[55]  Gregory J. Hannon,et al.  MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies , 2005, Nature Cell Biology.

[56]  S. Hunt,et al.  Contextual fear conditioning regulates the expression of brain‐specific small nucleolar RNAs in hippocampus , 2003, The European journal of neuroscience.

[57]  M. Fournier,et al.  Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. , 2003, Molecular cell.

[58]  Martina Paulsen,et al.  Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. , 2002, Human molecular genetics.

[59]  W. Stanford,et al.  Gene-trap mutagenesis: past, present and beyond , 2001, Nature Reviews Genetics.

[60]  Tamás Kiss,et al.  Small nucleolar RNA‐guided post‐transcriptional modification of cellular RNAs , 2001, The EMBO journal.

[61]  T. Lowe,et al.  A guided tour: small RNA function in Archaea , 2001, Molecular microbiology.

[62]  T. Kiss,et al.  A small nucleolar guide RNA functions both in 2′‐O‐ribose methylation and pseudouridylation of the U5 spliceosomal RNA , 2001, The EMBO journal.

[63]  A. Hüttenhofer,et al.  Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[64]  X. Darzacq,et al.  Nucleolar Factors Direct the 2′-O-Ribose Methylation and Pseudouridylation of U6 Spliceosomal RNA , 1999, Molecular and Cellular Biology.

[65]  J. Steitz,et al.  Guided tours: from precursor snoRNA to functional snoRNP. , 1999, Current opinion in cell biology.

[66]  S. Gerbi,et al.  U3 small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes. , 1999, Journal of molecular biology.

[67]  D. Tollervey,et al.  Function and synthesis of small nucleolar RNAs. , 1997, Current opinion in cell biology.

[68]  R. Emeson,et al.  Regulation of serotonin-2C receptor G-protein coupling by RNA editing , 1997, Nature.

[69]  J. Bachellerie,et al.  Processing of mammalian rRNA precursors at the 3' end of 18S rRNA. Identification of cis-acting signals suggests the involvement of U13 small nucleolar RNA. , 1996, European journal of biochemistry.

[70]  E. Maxwell,et al.  5'ETS rRNA processing facilitated by four small RNAs: U14, E3, U17, and U3. , 1996, RNA.

[71]  M. Fournier,et al.  U14 base-pairs with 18S rRNA: a novel snoRNA interaction required for rRNA processing. , 1995, Genes & development.

[72]  J. Steitz,et al.  Requirement for intron-encoded U22 small nucleolar RNA in 18S ribosomal RNA maturation. , 1994, Science.

[73]  J. Steitz,et al.  Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte , 1993, Cell.

[74]  M. Ares,et al.  Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre‐ribosomal RNA and impairs formation of 18S ribosomal RNA. , 1991, The EMBO journal.

[75]  J. Steitz,et al.  The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing , 1990, Cell.

[76]  D. Spencer Prader-Willi syndrome. , 1968, Lancet.

[77]  Peter F. Stadler,et al.  snoStrip: a snoRNA annotation pipeline , 2014, Bioinform..

[78]  K. Neugebauer,et al.  Cajal bodies: where form meets function , 2013, Wiley interdisciplinary reviews. RNA.

[79]  Steve Hoffmann,et al.  Dicer-processed small RNAs: rules and exceptions. , 2013, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[80]  Peter F. Stadler,et al.  Identification and Classification of Small RNAs in Transcriptome Sequence Data , 2010, Pacific Symposium on Biocomputing.

[81]  T. Zhao,et al.  Small ncRNA Expression and Regulation Under Hypoxia in Neural Progenitor Cells , 2010, Cellular and Molecular Neurobiology.

[82]  A. Holland,et al.  The course and outcome of psychiatric illness in people with Prader-Willi syndrome: implications for management and treatment. , 2007, Journal of intellectual disability research : JIDR.

[83]  Boris Rogelj,et al.  Brain-specific small nucleolar RNAs , 2007, Journal of Molecular Neuroscience.

[84]  U. Francke,et al.  Lack of Pwcr1/MBII-85 snoRNA is critical for neonatal lethality in Prader–Willi syndrome mouse models , 2005, Mammalian Genome.

[85]  D. Tollervey,et al.  The role of small nucleolar ribonucleoproteins in ribosome synthesis , 2004, Molecular Biology Reports.