Lefschetz section theorems for tropical hypersurfaces

We establish variants of the Lefschetz hyperplane section theorem for the integral tropical homology groups of tropical hypersurfaces of toric varieties. It follows from these theorems that the integral tropical homology groups of non-singular tropical hypersurfaces which are compact or contained in $\mathbb{R}^n$ are torsion free. We prove a relationship between the coefficients of the $\chi_y$ genera of complex hypersurfaces in toric varieties and Euler characteristics of the integral tropical cellular chain complexes of their tropical counterparts. It follows that the integral tropical homology groups give the Hodge numbers of compact non-singular hypersurfaces of complex toric varieties. Finally for tropical hypersurfaces in certain affine toric varieties, we relate the ranks of their tropical homology groups to the Hodge-Deligne numbers of their complex counterparts.

[1]  Ralph Morrison Tropical Geometry , 2019, Foundations for Undergraduate Research in Mathematics.

[2]  Kristin M. Shaw,et al.  Superforms, tropical cohomology, and Poincaré duality , 2015, Advances in Geometry.

[3]  Arthur Renaudineau,et al.  Bounding the Betti numbers of real hypersurfaces near the tropical limit , 2018, 1805.02030.

[4]  G. Mikhalkin,et al.  Tropical Homology , 2016, 1604.01838.

[5]  Askold Khovanskii,et al.  Newton polyhedra and toroidal varieties , 1977 .

[6]  Lars Kastner,et al.  Cellular Sheaf Cohomology in Polymake , 2016, 1612.09526.

[7]  Cambridge University Press , 2021 .

[8]  Andreas Gross,et al.  A sheaf-theoretic approach to tropical homology , 2019, Journal of Algebra.

[9]  K. Hensel Journal für die reine und angewandte Mathematik , 1892 .

[10]  Karim A. Adiprasito,et al.  Filtered geometric lattices and Lefschetz Section Theorems over the tropical semiring , 2014, 1401.7301.

[11]  G. Mikhalkin,et al.  Tropical Eigenwave and Intermediate Jacobians , 2013, 1302.0252.

[12]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[13]  J. Curry Sheaves, Cosheaves and Applications , 2013, 1303.3255.

[14]  M. Mustaţǎ,et al.  AND TOPOLOGY OF PROPER TORIC MAPS , 2022 .

[15]  Kristin M. Shaw,et al.  Lefschetz (1,1)-theorem in tropical geometry , 2017, Épijournal de Géométrie Algébrique.

[16]  A. Klyachko,et al.  NEWTON POLYHEDRA AND AN ALGORITHM FOR COMPUTING HODGE?DELIGNE NUMBERS , 1987 .

[17]  A. Scott,et al.  Ann Arbor , 1980 .

[18]  G. Mikhalkin,et al.  Brief introduction to tropical geometry , 2015, 1502.05950.

[19]  Ilia Zharkov,et al.  The Orlik-Solomon algebra and the Bergman fan of a Matroid , 2012, 1209.1651.

[20]  Thomas Markwig TROPICAL GEOMETRY , 2009 .

[21]  A. Stapledon,et al.  Tropical geometry, the motivic nearby fiber, and limit mixed Hodge numbers of hypersurfaces , 2014, 1404.3000.