Normalized Ground States for the Critical Fractional Choquard Equation with a Local Perturbation

[1]  M. Gallo,et al.  On fractional Schrödinger equations with Hartree type nonlinearities , 2021, Mathematics in Engineering.

[2]  Marco Gallo,et al.  Symmetric Ground States for Doubly Nonlocal Equations with Mass Constraint , 2021, Symmetry.

[3]  Vicenţiu D. Rădulescu,et al.  Small linear perturbations of fractional Choquard equations with critical exponent , 2021 .

[4]  Tao Yang,et al.  Normalized solutions for the fractional Schrödinger equation with a focusing nonlocal perturbation , 2021, Mathematical Methods in the Applied Sciences.

[5]  S Cingolani,et al.  Normalized solutions for fractional nonlinear scalar field equations via Lagrangian formulation , 2021, 2103.10747.

[6]  Binlin Zhang,et al.  Normalized ground states for the critical fractional NLS equation with a perturbation , 2021, Revista Matemática Complutense.

[7]  Zhipeng Yang,et al.  Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth , 2020, Advances in Nonlinear Analysis.

[8]  T. Bartsch,et al.  Normalized solutions for a class of nonlinear Choquard equations , 2020, SN Partial Differential Equations and Applications.

[9]  Zhitao Zhang,et al.  Normalized solutions to the fractional Schrödinger equations with combined nonlinearities , 2020 .

[10]  D. Cao,et al.  Standing waves with prescribed mass for the Schrödinger equations with van der Waals type potentials , 2020, 2007.00467.

[11]  S. Secchi,et al.  Normalized solutions for the fractional NLS with mass supercritical nonlinearity , 2020, 2006.00239.

[12]  Tao Yang Normalized solutions for the fractional Schrödinger equation with a focusing nonlocal L2-critical or L2-supercritical perturbation , 2020 .

[13]  L. Jeanjean,et al.  A mass supercritical problem revisited , 2020, Calculus of Variations and Partial Differential Equations.

[14]  N. Soave Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case , 2018, Journal of Functional Analysis.

[15]  T. Bartsch,et al.  Normalized solutions for a coupled Schrödinger system , 2019, Mathematische Annalen.

[16]  Gongbao Li,et al.  Existence and multiplicity of normalized solutions for a class of fractional Choquard equations , 2019, Science China Mathematics.

[17]  Huxiao Luo,et al.  Ground state solutions of Pohoz̆aev type for fractional Choquard equations with general nonlinearities , 2019, Comput. Math. Appl..

[18]  Shiwang Ma,et al.  Choquard equations with critical nonlinearities , 2018, Communications in Contemporary Mathematics.

[19]  Jianjun Zhang,et al.  Choquard-type equations with Hardy–Littlewood–Sobolev upper-critical growth , 2018, Advances in Nonlinear Analysis.

[20]  Shihui Zhu,et al.  Sharp threshold of blow-up and scattering for the fractional Hartree equation , 2017, 1705.08615.

[21]  Jean Van Schaftingen,et al.  Sharp Gagliardo–Nirenberg inequalities in fractional Coulomb–Sobolev spaces , 2016, Transactions of the American Mathematical Society.

[22]  Jihui Zhang,et al.  Existence and multiplicity of solutions for fractional Choquard equations , 2017 .

[23]  Jaeyoung Byeon,et al.  Nonlinear scalar field equations involving the fractional Laplacian , 2017 .

[24]  K. Sreenadh,et al.  Fractional Choquard equation with critical nonlinearities , 2016, 1605.06805.

[25]  H. Ye MASS MINIMIZERS AND CONCENTRATION FOR NONLINEAR CHOQUARD EQUATIONS IN R , 2016 .

[26]  H. Ye Mass minimizers and concentration for nonlinear Choquard equations in $\R^N$ , 2015, 1502.01560.

[27]  S. Longhi Fractional Schrödinger equation in optics. , 2015, Optics letters.

[28]  Minbo Yang,et al.  Ground states for nonlinear fractional Choquard equations with general nonlinearities , 2014, 1412.3184.

[29]  Enrico Valdinoci,et al.  The Brezis-Nirenberg result for the fractional Laplacian , 2014 .

[30]  M. Squassina,et al.  On fractional Choquard equations , 2014, 1406.7517.

[31]  P. Markowich,et al.  MULTICONFIGURATION HARTREE–FOCK THEORY FOR PSEUDORELATIVISTIC SYSTEMS: THE TIME-DEPENDENT CASE , 2014 .

[32]  S. Herr,et al.  The Boson star equation with initial data of low regularity , 2013, 1305.6392.

[33]  Jean Van Schaftingen,et al.  Existence of groundstates for a class of nonlinear Choquard equations , 2012, 1212.2027.

[34]  L. Silvestre,et al.  Uniqueness of Radial Solutions for the Fractional Laplacian , 2013, 1302.2652.

[35]  Xiaojun Chang,et al.  Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity , 2013 .

[36]  Jean Van Schaftingen,et al.  Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics , 2012, 1205.6286.

[37]  C. Argáez,et al.  Solutions to quasi-relativistic multi-configurative Hartree-Fock equations in quantum chemistry , 2012 .

[38]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[39]  Mathieu Lewin,et al.  On singularity formation for the L2-critical Boson star equation , 2011, 1103.3140.

[40]  Lin Zhao,et al.  Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation , 2010 .

[41]  Mathieu Lewin,et al.  On Blowup for Time-Dependent Generalized Hartree–Fock Equations , 2009, 0909.3043.

[42]  Enno Lenzmann,et al.  Uniqueness of ground states for pseudorelativistic Hartree equations , 2008, 0801.3976.

[43]  Luis Silvestre,et al.  Regularity of the obstacle problem for a fractional power of the laplace operator , 2007 .

[44]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[45]  Enno Lenzmann,et al.  Boson Stars as Solitary Waves , 2005, math-ph/0512040.

[46]  Enno Lenzmann,et al.  Well-posedness for Semi-relativistic Hartree Equations of Critical Type , 2005, math/0505456.

[47]  J. Froehlich,et al.  Mean-Field Limit of Quantum Bose Gases and Nonlinear Hartree Equation , 2004, math-ph/0409019.

[48]  A. Cotsiolis,et al.  Best constants for Sobolev inequalities for higher order fractional derivatives , 2004 .

[49]  Nils Ackermann,et al.  On a periodic Schrödinger equation with nonlocal superlinear part , 2004 .

[50]  D. Applebaum Lévy Processes—From Probability to Finance and Quantum Groups , 2004 .

[51]  H. Yau,et al.  On the Point-Particle (Newtonian) Limit¶of the Non-Linear Hartree Equation , 2002 .

[52]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[53]  Irene M. Moroz,et al.  Spherically symmetric solutions of the Schrodinger-Newton equations , 1998 .

[54]  R. Penrose Quantum computation, entanglement and state reduction , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[55]  L. Jeanjean Existence of solutions with prescribed norm for semilinear elliptic equations , 1997 .

[56]  R. Penrose On Gravity's role in Quantum State Reduction , 1996 .

[57]  Nassif Ghoussoub,et al.  Duality and Perturbation Methods in Critical Point Theory , 1993 .

[58]  W. Rother,et al.  Nonlinear scalar field equations , 1992, Differential and Integral Equations.

[59]  E. Lieb,et al.  The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics , 1987 .

[60]  R. Penrose The road to reality. , 1984, Nursing times.

[61]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[62]  P. Lions,et al.  The Choquard equation and related questions , 1980 .

[63]  E. Lieb Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation , 1977 .

[64]  S. I. Pekar,et al.  Untersuchungen über die Elektronentheorie der Kristalle , 1954 .