An Accurate Approximation to the Sampling Distribution of the Studentized Extreme Value Statistic
暂无分享,去创建一个
[1] D. E. Muller. A method for solving algebraic equations using an automatic computer , 1956 .
[2] John S. White. The Moments of Log-Weibull Order Statistics , 1969 .
[3] L. J. Bain,et al. Maximum Likelihood Estimation, Exact Confidence Intervals for Reliability, and Tolerance Limits in the Weibull Distribution , 1970 .
[4] Nancy R. Mann,et al. Design of Over-Stress Life-Test Experiments When Failure Times Have the Two-Parameter Weibull Distribution , 1972 .
[5] Nancy R. Mann,et al. Tables for Obtaining Weibull Confidence Bounds and Tolerance Bounds Based on Best Linear Invariant Estimates of Parameters of the Extreme-Value Distribution , 1973 .
[6] N. Mann,et al. A men goodness-of-fit test for the two-parameter wetbull or extreme-value distribution with unknown parameters , 1973 .
[7] F. E. Grubbs,et al. Chi-Square Approximations for Exponential Parameters, Prediction Intervals and Beta Percentiles , 1974 .
[8] E. Kay,et al. Methods for statistical analysis of reliability and life data , 1974 .
[9] Nancy R. Mann,et al. Simplified Efficient Point and Interval Estimators for Weibull Parameters , 1975 .
[10] J. Lawless,et al. Tests for homogeneity of extreme value scale parameters , 1976 .
[11] Lee J. Bain,et al. Simplified Statistical Procedures for the Weibull or Extreme-Value Distribution , 1977 .
[12] S. K. Lee,et al. Some Results on Inference for the Weibull Process , 1978 .
[13] K. Fertig,et al. Life-Test Sampling Plans for Two-Parameter Weibull Populations , 1980 .