An Accurate Approximation to the Sampling Distribution of the Studentized Extreme Value Statistic

The principal result of this paper is the discovery of an excellent approximation to the sampling distribution of the statistic used in the construction of Weibull tolerance bounds. The approximation is compared over a wide range of cases to Monte Carlo results and to two other recently derived approximations. In no case has it been found to be deficient.

[1]  D. E. Muller A method for solving algebraic equations using an automatic computer , 1956 .

[2]  John S. White The Moments of Log-Weibull Order Statistics , 1969 .

[3]  L. J. Bain,et al.  Maximum Likelihood Estimation, Exact Confidence Intervals for Reliability, and Tolerance Limits in the Weibull Distribution , 1970 .

[4]  Nancy R. Mann,et al.  Design of Over-Stress Life-Test Experiments When Failure Times Have the Two-Parameter Weibull Distribution , 1972 .

[5]  Nancy R. Mann,et al.  Tables for Obtaining Weibull Confidence Bounds and Tolerance Bounds Based on Best Linear Invariant Estimates of Parameters of the Extreme-Value Distribution , 1973 .

[6]  N. Mann,et al.  A men goodness-of-fit test for the two-parameter wetbull or extreme-value distribution with unknown parameters , 1973 .

[7]  F. E. Grubbs,et al.  Chi-Square Approximations for Exponential Parameters, Prediction Intervals and Beta Percentiles , 1974 .

[8]  E. Kay,et al.  Methods for statistical analysis of reliability and life data , 1974 .

[9]  Nancy R. Mann,et al.  Simplified Efficient Point and Interval Estimators for Weibull Parameters , 1975 .

[10]  J. Lawless,et al.  Tests for homogeneity of extreme value scale parameters , 1976 .

[11]  Lee J. Bain,et al.  Simplified Statistical Procedures for the Weibull or Extreme-Value Distribution , 1977 .

[12]  S. K. Lee,et al.  Some Results on Inference for the Weibull Process , 1978 .

[13]  K. Fertig,et al.  Life-Test Sampling Plans for Two-Parameter Weibull Populations , 1980 .