Formulation of error propagation and estimation in grating reconstruction by a dual-rotating compensator Mueller matrix polarimeter

Abstract Recently, the Mueller matrix polarimeter (MMP) has been introduced for critical dimension and overlay metrology. In practice, the measurement process invariably has errors. These errors, which can be generally categorized into random and systematic errors, have great influences on the final precision and accuracy of the extracted structural parameters. In this paper, we present detailed formulations for the propagation and estimation of random and systematic errors in grating reconstruction using a dual-rotating compensator MMP (DRC-MMP). We derive a generalized first-order error propagating formula, which reveals the mechanism of error propagation in grating reconstruction using the DRC-MMP. According to this first-order error propagating formula and the measurement principle of the DRC-MMP, we then derive detailed formulations for the estimation of random and systematic errors that are propagated into the final extracted structural parameters. Simulations performed on silicon grating samples have demonstrated the validity of the present theoretical derivations.

[1]  Matthew H. Smith,et al.  Optimization of a dual-rotating-retarder Mueller matrix polarimeter. , 2002, Applied optics.

[2]  Hui Zhou,et al.  Improving optical measurement accuracy using multi-technique nested uncertainties , 2009, Advanced Lithography.

[3]  Hsu-ting Huang,et al.  Normal-incidence spectroscopic ellipsometry for critical dimension monitoring , 2001 .

[4]  Lifeng Li,et al.  Use of Fourier series in the analysis of discontinuous periodic structures , 1996 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Russell A. Chipman,et al.  Error analysis of a Mueller matrix polarimeter , 1990 .

[7]  Antonello De Martino,et al.  Optimized Mueller polarimeter with liquid crystals. , 2003, Optics letters.

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  T. Gaylord,et al.  Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings , 1995 .

[10]  R. Chipman,et al.  Optimization of Mueller matrix polarimeters in the presence of error sources. , 2008, Optics express.

[11]  A. C. Rencher Methods of multivariate analysis , 1995 .

[12]  R. Azzam,et al.  Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. , 1978, Optics letters.

[13]  Chuanwei Zhang,et al.  Estimation of the convergence order of rigorous coupled-wave analysis for binary gratings in optical critical dimension metrology , 2012 .

[14]  Russell A. Chipman,et al.  Mueller matrix algorithms , 1992, Optics & Photonics.

[15]  Heather Patrick,et al.  Developing an uncertainty analysis for optical scatterometry , 2009, Advanced Lithography.

[16]  Rayan M. Al-Assaad,et al.  Error analysis in inverse scatterometry. I. Modeling. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  P. S. Hauge,et al.  Mueller matrix ellipsometry with imperfect compensators , 1978 .

[18]  Jiangtao Hu,et al.  Device based in-chip critical dimension and overlay metrology. , 2009, Optics express.

[19]  Tielin Shi,et al.  Improved model-based infrared reflectrometry for measuring deep trench structures. , 2009, Journal of The Optical Society of America A-optics Image Science and Vision.

[20]  Michael Bass,et al.  Handbook of optics , 1995 .

[21]  Yongdong Liu,et al.  Mueller matrix measurement of asymmetric gratings , 2010 .

[22]  Hao Jiang,et al.  Measurement configuration optimization for accurate grating reconstruction by Mueller matrix polarimetry , 2013 .

[23]  Enric Garcia-Caurel,et al.  Spectroscopic Mueller polarimeter based on liquid crystal devices , 2004 .

[24]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[25]  Marco Diani,et al.  Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[26]  M. Besacier,et al.  Real time scatterometry for profile control during resist trimming process , 2009 .

[27]  Jiangtao Hu,et al.  Uncertainty and sensitivity analysis and its applications in OCD measurements , 2009, Advanced Lithography.

[28]  Wei Li,et al.  Uncooled infrared detection with two-color microbolometers using a micro-optoelectromechanical systems tunable micromirror , 2010 .

[29]  Li Tao,et al.  Characterizing nanoimprint profile shape and polymer flow behavior using visible light angular scatterometry , 2007 .

[30]  Laurent Broch,et al.  Analysis of systematic errors in Mueller matrix ellipsometry as a function of the retardance of the dual rotating compensators , 2011 .

[31]  Andrew G. Glen,et al.  APPL , 2001 .

[32]  Craig M. Herzinger,et al.  Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation , 1998 .

[33]  A. En Naciri,et al.  Systematic errors for a Mueller matrix dual rotating compensator ellipsometer. , 2008, Optics express.

[34]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[35]  Fabrizio Argenti,et al.  MMSE filtering of generalised signal-dependent noise in spatial and shift-invariant wavelet domains , 2006, Signal Process..

[36]  Tatiana Novikova,et al.  Metrology of replicated diffractive optics with Mueller polarimetry in conical diffraction , 2007 .

[37]  Eugene A. Irene,et al.  Handbook of Ellipsometry , 2005 .

[38]  Robert W. Collins,et al.  Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films , 1999 .