Facile synthesis of 3D flower-like porous NiO architectures with an excellent capacitance performance

3D flower-like porous NiO architectures were synthesized via a facile and green method. When applied as an electrode material for supercapacitors, the as-prepared 3D flower-like porous NiO exhibited an outstanding electrochemical performance, such as a high specific capacitance (1609 F g−1 at 2 A g−1), and a long-term cycling stability (4.3% loss after 3000 cycles). The excellent electrochemical performance is mainly attributed to the morphology of the porous ultrathin nanosheets self-assembling into flower-like architectures, which facilitate fast and efficient diffusion of the electrolyte ions. Thus, it is expected that the 3D flower-like porous NiO can be a perspective electrode material for electrochemical energy storage applications.

[1]  Rujia Zou,et al.  MnMoO4·4H2O nanoplates grown on a Ni foam substrate for excellent electrochemical properties , 2014 .

[2]  X. Xia,et al.  Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application , 2014 .

[3]  Rajan Jose,et al.  High performance supercapacitor electrodes from electrospun nickel oxide nanowires , 2014 .

[4]  S. Ding,et al.  One-step synthesis of free-standing α-Ni(OH)2 nanosheets on reduced graphene oxide for high-performance supercapacitors , 2014, Nanotechnology.

[5]  Jie Zhang,et al.  Hierarchical Composite Electrodes of Nickel Oxide Nanoflake 3D Graphene for High‐Performance Pseudocapacitors , 2014 .

[6]  Anis Allagui,et al.  Size-dependent capacitance of NiO nanoparticles synthesized with cathodic contact glow discharge electrolysis , 2014 .

[7]  Jiayou Tao,et al.  Ultrathin and lightweight 3D free-standing Ni@NiO nanowire membrane electrode for a supercapacitor with excellent capacitance retention at high rates. , 2014, ACS applied materials & interfaces.

[8]  Zhiguang Guo,et al.  Green synthesis of open porous NiO films with an excellent capacitance performance. , 2014, Chemical communications.

[9]  S. El‐Safty,et al.  Mesoporous NiO nanoarchitectures for electrochemical energy storage: influence of size, porosity, and morphology , 2013 .

[10]  I. M. Babu,et al.  Nanosheet-assembled NiO microstructures for high-performance supercapacitors. , 2013, ACS applied materials & interfaces.

[11]  Haitao Huang,et al.  A One‐Step and Binder‐Free Method to Fabricate Hierarchical Nickel‐Based Supercapacitor Electrodes with Excellent Performance , 2013 .

[12]  Rujia Zou,et al.  Self-assembling hybrid NiO/Co3O4 ultrathin and mesoporous nanosheets into flower-like architectures for pseudocapacitance , 2013 .

[13]  Hongmei Du,et al.  Polyol-mediated synthesis of mesoporous α-Ni(OH)2 with enhanced supercapacitance. , 2013, ACS applied materials & interfaces.

[14]  Rujia Zou,et al.  Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors , 2013 .

[15]  Yang Li,et al.  Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. , 2013, ACS nano.

[16]  Yuanyuan Li,et al.  Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. , 2013, Nano letters.

[17]  G. Muralidharan,et al.  Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. , 2013, ACS applied materials & interfaces.

[18]  Xiaoyan Yan,et al.  Rational synthesis of hierarchically porous NiO hollow spheres and their supercapacitor application , 2013 .

[19]  Hyun‐Kon Song,et al.  Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. , 2013, ACS applied materials & interfaces.

[20]  Aiqin Zhang,et al.  3D Hierarchical Co3O4 Twin‐Spheres with an Urchin‐Like Structure: Large‐Scale Synthesis, Multistep‐Splitting Growth, and Electrochemical Pseudocapacitors , 2012 .

[21]  H. Alshareef,et al.  Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. , 2012, Nano letters.

[22]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[23]  J. Lian,et al.  Porous nickel oxide nano-sheets for high performance pseudocapacitance materials , 2011 .

[24]  Songhun Yoon,et al.  Investigation of Pseudocapacitive Charge-Storage Behavior in Highly Conductive Ordered Mesoporous Tungsten Oxide Electrodes , 2011 .

[25]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[26]  Weifeng Wei,et al.  Manganese oxide-based materials as electrochemical supercapacitor electrodes. , 2011, Chemical Society reviews.

[27]  Weiguo Song,et al.  Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes , 2011 .

[28]  L. Gao,et al.  From Three‐Dimensional Flower‐Like α‐Ni(OH)2 Nanostructures to Hierarchical Porous NiO Nanoflowers: Microwave‐Assisted Fabrication and Supercapacitor Properties , 2010 .

[29]  Yanhui Yang,et al.  Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes , 2010 .

[30]  Pooi See Lee,et al.  Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. , 2010, ACS nano.

[31]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[32]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[33]  Mao-wen Xu,et al.  Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route , 2008 .

[34]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[35]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[36]  Neil Genzlinger A. and Q , 2006 .

[37]  Peter W Voorhees,et al.  The theory of Ostwald ripening , 1985 .