Effective Methods for Solving Banded Toeplitz Systems

We propose new algorithms for solving n x n banded Toeplitz systems with bandwidth m. If the function associated with the Toeplitz matrix has no zero in the unit circle, then $O(n\log m + m\log ^2 m\log\log \epsilon^{-1})$ arithmetic operations (ops) are sufficient to approximate the solution of the system up to within the error $\epsilon$; otherwise the cost becomes $O(n\log m +m\log^2 m\log {n\over m})$ ops. Here $m=o(n)$ and $n>\log \epsilon^{-1}$. Some applications are presented. The methods can be applied to infinite and bi-infinite systems and to block matrices.

[1]  Alexandre Ostrowski Recherches sur la méthode de graeffe et les zéros des polynomes et des séries de laurent , 1940 .

[2]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[3]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[4]  Dario Bini,et al.  A new preconditioner for the parallel solution of positive definite Toeplitz systems , 1990, SPAA '90.

[5]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[6]  H. R. Gail,et al.  Non-Skip-Free M/G/1 and G/M/1 Type Markov Chains , 1997, Advances in Applied Probability.

[7]  Plamen Y. Yalamov,et al.  Stability of the block cyclic reduction , 1996 .

[8]  Ahmed Sameh,et al.  On Certain Parallel Toeplitz Linear System Solvers , 1981 .

[9]  M. Morf,et al.  Inverses of Toeplitz operators, innovations, and orthogonal polynomials , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[10]  Raymond H. Chan,et al.  Scientific applications of iterative Toeplitz solvers , 1996 .

[11]  Beatrice Meini,et al.  Inverting block Toeplitz matrices in block Hessenberg form by means of displacement operators: Application to queueing problems , 1998 .

[12]  D. Heller Some Aspects of the Cyclic Reduction Algorithm for Block Tridiagonal Linear Systems , 1976 .

[13]  Raymond H. Chan,et al.  Fast Band-Toeplitz Preconditioners for Hermitian Toeplitz Systems , 1994, SIAM J. Sci. Comput..

[14]  Dario Bini,et al.  Parallel Solution of Certain Toeplitz Linear Systems , 1984, SIAM J. Comput..

[15]  Marcel F. Neuts,et al.  Structured Stochastic Matrices of M/G/1 Type and Their Applications , 1989 .

[16]  Stefano Serra,et al.  Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems , 1994 .

[17]  W. Gander,et al.  Cyclic Reduction for Special Tridiagonal Systems , 1994 .

[18]  Dario Andrea Bini,et al.  Matrix structures in parallel matrix computations , 1988 .

[19]  Dario Bini,et al.  On Cyclic Reduction Applied to a Class of Toeplitz-Like Matrices Arising in Queueing Problems , 1995 .

[20]  Beatrice Meini,et al.  On the Solution of a Nonlinear Matrix Equation Arising in Queueing Problems , 1996, SIAM J. Matrix Anal. Appl..

[21]  Ali H. Sayed,et al.  Displacement Structure: Theory and Applications , 1995, SIAM Rev..

[22]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[23]  Dario Bini,et al.  SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .