Lattice-Like Total Perfect Codes

Abstract A contribution is made to the classification of lattice-like total perfect codes in integer lattices Λn via pairs (G, Φ) formed by abelian groups G and homomorphisms Φ: Zn → G. A conjecture is posed that the cited contribution covers all possible cases. A related conjecture on the unfinished work on open problems on lattice-like perfect dominating sets in Λn with induced components that are parallel paths of length > 1 is posed as well.

[1]  Jan Kratochvíl,et al.  On the Computational Complexity of Codes in Graphs , 1988, MFCS.

[2]  Peter Horák,et al.  Diameter Perfect Lee Codes , 2012, IEEE Transactions on Information Theory.

[3]  Tuvi Etzion,et al.  Product Constructions for Perfect Lee Codes , 2011, IEEE Transactions on Information Theory.

[4]  Moshe Schwartz,et al.  Quasi-Cross Lattice Tilings With Applications to Flash Memory , 2011, IEEE Transactions on Information Theory.

[5]  Sueli I. Rodrigues Costa,et al.  Graphs, tessellations, and perfect codes on flat tori , 2004, IEEE Transactions on Information Theory.

[6]  Peter Horák,et al.  Non-periodic Tilings of ℝn by Crosses , 2012, Discret. Comput. Geom..

[7]  Paul M. Weichsel Twisted Perfect Dominating Subgraphs of Hypercubes , .

[8]  Paul M. Weichsel,et al.  Dominating sets in n-cubes , 1994, J. Graph Theory.

[9]  Sherman Stein Packings of Rn by certain error spheres , 1984, IEEE Trans. Inf. Theory.

[10]  Italo J. Dejter,et al.  Perfect domination in rectangular grid graphs , 2007, 0711.4345.

[11]  Sherman K. Stein Factoring by subsets , 1967 .

[12]  Italo J. Dejter,et al.  A generalization of Lee codes , 2014, Des. Codes Cryptogr..

[13]  Italo J. Dejter,et al.  Efficient dominating sets in Cayley graphs , 2003, Discret. Appl. Math..

[14]  S. Golomb,et al.  Perfect Codes in the Lee Metric and the Packing of Polyominoes , 1970 .

[15]  Dean Hickerson,et al.  Abelian groups and packing by semicrosses. , 1986 .