Computationally efficient 2D beamspace matrix pencil method for direction of arrival estimation

In this paper, we propose a new 2-dimensional beamspace matrix pencil (2D BMP) method for direction of arrival (DOA) estimation of plane wave signals using a uniform rectangular array (URA). Based on some a priori information about DOA, the proposed method transforms the complex signal subspace in 2D matrix pencil (2D MP) method [Y. Hua, Estimating two-dimensional frequencies by matrix enhancement and matrix pencil, IEEE Trans. Signal Process. 40 (9) (1992) 2267-2280] into a real and reduced dimensional beamspace using the discrete Fourier transform (DFT) matrix transformation. Consequently, the computational complexity is reduced (several times) in comparison with 2D MP method. Computer simulations are provided to show that 2D BMP method gives comparable performance in terms of average mean square error of the estimated DOA with lesser floating point operations as compared to the existing (MP) methods.

[1]  Jinhwan Koh,et al.  Utilization of a unitary transform for efficient computation in the matrix pencil method to find the direction of arrival , 2006, IEEE Transactions on Antennas and Propagation.

[2]  T. Sarkar,et al.  Using the matrix pencil method to estimate the parameters of a sum of complex exponentials , 1995 .

[3]  Sam Kwong,et al.  Estimation of Two-Dimensional Frequencies Using Modified Matrix Pencil Method , 2007, IEEE Transactions on Signal Processing.

[4]  Gene H. Golub,et al.  Matrix computations , 1983 .

[5]  Tapan K. Sarkar,et al.  Multiple snapshot direct data domain approach and ESPRIT method for direction of arrival estimation , 2008, Digit. Signal Process..

[6]  Tapan K. Sarkar,et al.  2-D unitary matrix pencil method for efficient direction of arrival estimation , 2006, Digit. Signal Process..

[7]  Chien-Chung Yeh,et al.  A unitary transformation method for angle-of-arrival estimation , 1991, IEEE Trans. Signal Process..

[8]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[9]  Manuel Felipe Cátedra,et al.  A Comparison between Matrix Pencil and Root-MUSIC for Direction-of-Arrival Estimation Making Use of Uniform Linear Arrays , 1997, Digit. Signal Process..

[10]  Tapan K. Sarkar,et al.  Comparison between the Matrix Pencil Method and the Fourier Transform Technique for High-Resolution Spectral Estimation , 1996, Digit. Signal Process..

[11]  Michael D. Zoltowski,et al.  Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT , 1996, IEEE Trans. Signal Process..

[12]  Muhammad Tufail,et al.  Beamspace matrix pencil method for direction of arrival estimation , 2009, IEICE Electron. Express.

[13]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[14]  S. L. Netto,et al.  Beamspace covariance-based DoA estimation , 2008, 2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications.

[15]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[16]  Yingbo Hua Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..

[17]  N. Yilmazer,et al.  Efficient computation of the azimuth and elevation angles of the sources by using unitary matrix pencil method (2-D UMP) , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[18]  Petre Stoica,et al.  Comparative performance study of element-space and beam-space MUSIC estimators , 1991 .