Nonlinear Control of a Robot Manipulator with a Nonholonomic Jerk Constraint

We study the control of a prismatic-prismatic-revolute PPR robot manipulator subject to a nonholonomic jerk constraint, i.e., a third-order nonintegrable design constraint. The mathematical model is obtained using the method of Lagrange multipliers. The control inputs are two forces and a torque applied to the prismatic joints and the revolute joint, respectively. The control objective is to control the robot end-effector movement while keeping the transverse jerk component as zero. The main result of the paper is the construction of a feedback control algorithm that transfers the manipulator from any initial equilibrium configuration to the zero equilibrium configuration in finite time. The effectiveness of the algorithm is illustrated through a simulation example.

[1]  Arjan van der Schaft,et al.  Dynamics and control of a class of underactuated mechanical systems , 1999, IEEE Trans. Autom. Control..

[2]  H. Sussmann Subanalytic sets and feedback control , 1979 .

[3]  H. Sussmann A general theorem on local controllability , 1987 .

[4]  A. Astolfi Discontinuous control of nonholonomic systems , 1996 .

[5]  Arie Levant,et al.  Universal single-input-single-output (SISO) sliding-mode controllers with finite-time convergence , 2001, IEEE Trans. Autom. Control..

[6]  O. J. Sørdalen,et al.  Exponential stabilization of nonholonomic chained systems , 1995, IEEE Trans. Autom. Control..

[7]  J. Coron A necessary condition for feedback stabilization , 1990 .

[8]  Zhong-Ping Jiang,et al.  A recursive technique for tracking control of nonholonomic systems in chained form , 1999, IEEE Trans. Autom. Control..

[9]  M. Reyhanoglu A general nonholonomic motion planning strategy for Caplygin systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[10]  Jean-Paul Laumond,et al.  Controllability of a multibody mobile robot , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[11]  Chih-Chen Yih Sliding‐Mode Velocity Control of a Two‐Wheeled Self‐Balancing Vehicle , 2014 .

[12]  Philip L. Freeman,et al.  Minimum Jerk Trajectory Planning for Trajectory Constrained Redundant Robots , 2012 .

[13]  E. Jarzębowska On Derivation of Motion Equations for Systems with Non-Holonomic High-Order Program Constraints , 2002 .

[14]  Shen Ze-chun,et al.  On the new forms of the differential equations of the systems with higher-order nonholonomic constraints , 1987 .

[15]  Jaime Rubio Hervas,et al.  Dynamics and control of higher-order nonholonomic systems , 2013 .

[16]  N. McClamroch,et al.  Controllability and Stabilizability of Planar Multibody Systems with Angular Momentum Preserving Control Torques , 1991, 1991 American Control Conference.

[17]  Yiguang Hong,et al.  Finite-time stabilization and stabilizability of a class of controllable systems , 2002, Syst. Control. Lett..

[18]  Henk Nijmeijer,et al.  Tracking control of second‐order chained form systems by cascaded backstepping , 2003 .

[19]  O. Egeland,et al.  A Lyapunov approach to exponential stabilization of nonholonomic systems in power form , 1997, IEEE Trans. Autom. Control..

[20]  Guoliang Wei,et al.  Output feedback stabilization for stochastic nonholonomic systems with nonlinear drifts and Markovian switching , 2014 .

[21]  S. Sastry,et al.  Stabilization of trajectories for systems with nonholonomic constraints , 1994 .

[22]  Alberto Ibort,et al.  A generalization of Chetaev’s principle for a class of higher order nonholonomic constraints , 2004 .

[23]  Mahmut Reyhanoglu,et al.  Nonlinear modeling and control of slosh in liquid container transfer via a PPR robot , 2013, Commun. Nonlinear Sci. Numer. Simul..

[24]  Mahmut Reyhanoglu,et al.  Control and stabilization of a third-order nonholonomic system , 2013, 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013).

[25]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[26]  Dennis S. Bernstein,et al.  Geometric homogeneity with applications to finite-time stability , 2005, Math. Control. Signals Syst..

[27]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[28]  Mahmut Reyhanoglu,et al.  On the Attitude Stabilization of a Rigid Spacecraft Using Two Control Torques , 1992, 1992 American Control Conference.

[29]  H. Krishnan,et al.  Attitude stabilization of a rigid spacecraft using gas jet actuators operating in a failure mode , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[30]  Mikhail Kryachkov,et al.  Finite-time stabilization of an integrator chain using only signs of the state variables , 2010, 2010 11th International Workshop on Variable Structure Systems (VSS).

[31]  Wei-li Huang,et al.  Conformal invariance and conserved quantity of Mei symmetry for higher-order nonholonomic system , 2012 .

[32]  C. Samson Control of chained systems application to path following and time-varying point-stabilization of mobile robots , 1995, IEEE Trans. Autom. Control..

[33]  I. Kovacic On the field method in non-holonomic mechanics , 2005 .

[34]  Elzbieta Jarzebowska Model-Based Tracking Control of Nonlinear Systems , 2012 .

[35]  Yoshihiko Nakamura,et al.  Nonholonomic path planning of space robots via bi-directional approach , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[36]  Jaime Rubio Hervas,et al.  Nonlinear dynamics and control of space vehicles with multiple fuel slosh modes , 2012 .

[37]  Jarzebowska Jarzebowska,et al.  Advanced Programmed Motion Tracking Control of Nonholonomic Mechanical Systems , 2008, IEEE Transactions on Robotics.

[38]  Mahmut Reyhanoglu,et al.  Controllability and point-to-point control of 3-DOF planar horizontal underactuated manipulators , 2005 .