An Introduction to Rough Sets

Fundamental philosophy, concepts and notions of rough set theory (RST) are reviewed. Emphasis is on a constructive formulation and interpretation of rough set approximations. We restrict our discussions to classical RST introduced by Pawlak, with some brief references to the existing extensions. Whenever possible, we provide multiple equivalent definitions of fundamental RST notions in order to better illustrate their usefulness. We also refer to principles of RST based data analysis that can be used to mine data gathered in information tables.

[1]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[2]  Yiyu Yao,et al.  A Note on Definability and Approximations , 2007, Trans. Rough Sets.

[3]  Witold Lipski,et al.  On semantic issues connected with incomplete information databases , 1979, ACM Trans. Database Syst..

[4]  Piotr Synak,et al.  Brighthouse: an analytic data warehouse for ad-hoc queries , 2008, Proc. VLDB Endow..

[5]  Beata Sikora,et al.  Rough Natural Hazards Monitoring , 2012 .

[6]  David Mason,et al.  Encyclopedia of Data Warehousing and Mining, 2nd ed. , 2009 .

[7]  Andrzej Skowron,et al.  Rough sets: Some extensions , 2007, Inf. Sci..

[8]  Roger Tagg,et al.  Workflow Management Supported by Rough Set Concepts , 2012 .

[9]  Howard J. Hamilton,et al.  Interestingness measures for data mining: A survey , 2006, CSUR.

[10]  Ewa Orlowska Logical aspects of learning concepts , 1988, Int. J. Approx. Reason..

[11]  Ivo Düntsch,et al.  Uncertainty Measures of Rough Set Prediction , 1998, Artif. Intell..

[12]  Yiyu Yao Three-Way Decisions Using Rough Sets , 2012 .

[13]  Andrzej Skowron,et al.  Modeling rough granular computing based on approximation spaces , 2012, Inf. Sci..

[14]  Fernando A. Crespo,et al.  Rough Clustering Approaches for Dynamic Environments , 2012 .

[15]  Sushmita Mitra,et al.  Feature Selection, Classification and Rule Generation Using Rough Sets , 2012 .

[16]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[17]  John Wang,et al.  Encyclopedia of Data Warehousing and Mining , 2005 .

[18]  Jerzy W. Grzymala-Busse LERS - A Data Mining System , 2005, The Data Mining and Knowledge Discovery Handbook.

[19]  Salvatore Greco,et al.  Dominance-based Rough Set Approach to decision under uncertainty and time preference , 2010, Ann. Oper. Res..

[20]  Yiyu Yao,et al.  Interpreting Concept Learning in Cognitive Informatics and Granular Computing , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[21]  Dominik Ślęzak,et al.  Various approaches to reasoning with frequency based decision reducts: a survey , 2000 .

[22]  Jan G. Bazan Hierarchical Classifiers for Complex Spatio-temporal Concepts , 2008, Trans. Rough Sets.

[23]  Jerzy W. Grzymala-Busse,et al.  Rough Sets and Data Mining , 2009, Encyclopedia of Data Warehousing and Mining.

[24]  R. Słowiński Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory , 1992 .

[25]  Wei-Zhi Wu,et al.  Knowledge acquisition in incomplete fuzzy information systems via the rough set approach , 2003, Expert Syst. J. Knowl. Eng..

[26]  Qiang Shen,et al.  Computational Intelligence and Feature Selection - Rough and Fuzzy Approaches , 2008, IEEE Press series on computational intelligence.

[27]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[28]  James F. Peters,et al.  Nearness of Associated Rough Sets , 2012 .

[29]  Marcin S. Szczuka,et al.  The Rough Set Exploration System , 2005, Trans. Rough Sets.

[30]  Aboul Ella Hassanien,et al.  Rough Computing: Theories, Technologies and Applications , 2007 .

[31]  Hiroshi Motoda,et al.  Computational Methods of Feature Selection , 2022 .

[32]  Yiyu Yao,et al.  Rough Sets: Selected Methods and Applications in Management and Engineering , 2012, Advanced Information and Knowledge Processing.

[33]  Tsau Young Lin,et al.  Rough Sets and Data Mining: Analysis of Imprecise Data , 1996 .

[34]  Dominik Slezak,et al.  Rough Sets and Functional Dependencies in Data: Foundations of Association Reducts , 2009, Trans. Comput. Sci..

[35]  Yiyu Yao,et al.  Two views of the theory of rough sets in finite universes , 1996, Int. J. Approx. Reason..

[36]  Hung Son Nguyen,et al.  Approximate Boolean Reasoning: Foundations and Applications in Data Mining , 2006, Trans. Rough Sets.

[37]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.

[38]  Roman Słowiński,et al.  Intelligent Decision Support , 1992, Theory and Decision Library.

[39]  Lech Polkowski,et al.  Rough Sets in Knowledge Discovery 2 , 1998 .

[40]  Sebastian Widz,et al.  Rough Set Based Decision Support—Models Easy to Interpret , 2012 .

[41]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[42]  Witold Pedrycz,et al.  Positive approximation: An accelerator for attribute reduction in rough set theory , 2010, Artif. Intell..

[43]  P. Lingras,et al.  Financial Series Forecasting Using Dual Rough Support Vector Regression , 2012 .

[44]  Pawan Lingras,et al.  Applying Rough Set Concepts to Clustering , 2012 .

[45]  Constantin F. Aliferis,et al.  Causal Feature Selection , 2007 .

[46]  Yiyu Yao,et al.  Probabilistic rough set approximations , 2008, Int. J. Approx. Reason..

[47]  Marzena Kryszkiewicz,et al.  Rough Set Approach to Incomplete Information Systems , 1998, Inf. Sci..

[48]  Andrzej Skowron,et al.  Rudiments of rough sets , 2007, Inf. Sci..

[49]  Yanyong Guan,et al.  Set-valued information systems , 2006, Inf. Sci..

[50]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[51]  Ryszard S. Michalski,et al.  Categories and Concepts: Theoretical Views and Inductive Data Analysis , 1993 .

[52]  Adam Mrózek,et al.  Rough Sets and Dependency Analysis among Attributes in Computer Implementations of Expert's Inference Models , 1989, Int. J. Man Mach. Stud..

[53]  Zdzislaw Pawlak,et al.  Information systems theoretical foundations , 1981, Inf. Syst..