Combined pressure and magnetic-field induced caloric effects in Fe7Se8 single crystals

[1]  R. Cava,et al.  Ferrites without Iron as Potential Quantum Materials , 2022, Progress in Solid State Chemistry.

[2]  M. Reis Magnetocaloric and barocaloric effects of metal complexes for solid state cooling: Review, trends and perspectives , 2020 .

[3]  M. Yan,et al.  Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration , 2020 .

[4]  F. S. Jesús,et al.  Large magnetocaloric effect near to room temperature in Sr doped La0.7Ca0.3MnO3 , 2020 .

[5]  C. Alves,et al.  Magnetic and magnetocaloric properties of (Gd,Nd)5Si4 compounds , 2020 .

[6]  E. V. Bogdanov,et al.  Conventional and inverse barocaloric effects in ferroelectric NH4HSO4 , 2019, Journal of Alloys and Compounds.

[7]  C. Aprea,et al.  A review of the state of the art of solid-state caloric cooling processes at room-temperature before 2019 , 2019, International Journal of Refrigeration.

[8]  X. Moya,et al.  Giant and Reversible Inverse Barocaloric Effects near Room Temperature in Ferromagnetic MnCoGeB0.03 , 2019, Advanced materials.

[9]  I. Dubenko,et al.  Giant reversible barocaloric response of (MnNiSi)1−x(FeCoGe)x (x = 0.39, 0.40, 0.41) , 2019, APL Materials.

[10]  R. Harrison,et al.  Group-theoretical analysis of structural instability, vacancy ordering and magnetic transitions in the system troilite (FeS)-pyrrhotite (Fe1-xS). , 2019, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[11]  M. Berkowski,et al.  Structural, magnetic, and magnetocaloric properties of Fe7Se8 single crystals , 2018, Journal of Applied Physics.

[12]  A. Pathak,et al.  Best practices in evaluation of the magnetocaloric effect from bulk magnetization measurements , 2018, Journal of Magnetism and Magnetic Materials.

[13]  S. Banerjee,et al.  Magnetic properties and large reversible magnetocaloric effect in Er3Pd2 , 2018, Journal of Magnetism and Magnetic Materials.

[14]  V. Pecharsky,et al.  Material-based figure of merit for caloric materials , 2018 .

[15]  Zhidong Zhang,et al.  Magnetic properties and magnetocaloric effect of a trigonal Te-rich Cr5Te8 single crystal , 2018 .

[16]  O. Gutfleisch,et al.  The influence of magnetocrystalline anisotropy on the magnetocaloric effect: A case study on Co 2B , 2016 .

[17]  P. Fournier,et al.  Magnetocaloric properties of the hexagonal HoMnO3 single crystal revisited , 2015 .

[18]  D. Sheptyakov,et al.  Layer-preferential substitutions and magnetic properties of pyrrhotite-type Fe7−yMyX8 chalcogenides (X = S, Se; M = Ti, Co) , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  B. Shen,et al.  Giant rotating magnetocaloric effect induced by highly texturing in polycrystalline DyNiSi compound , 2015, Scientific Reports.

[20]  Henryk Szymczak,et al.  Comparison of magnetocaloric properties of the Mn 2-x Fe x P 0.5 As 0.5 (x = 1.0 and 0.7) compounds , 2014 .

[21]  Kaspar Kirstein Nielsen,et al.  Materials Challenges for High Performance Magnetocaloric Refrigeration Devices , 2012 .

[22]  Zhaohua Cheng,et al.  Rotating field entropy change in hexagonal TmMnO3 single crystal with anisotropic paramagnetic response , 2012 .

[23]  J. Zou Magnetocaloric and barocaloric effects in a Gd 5 Si 2 Ge 2 compound , 2010, 1012.2102.

[24]  T. I. Ivanova,et al.  Giant rotating magnetocaloric effect in the region of spin-reorientation transition in the NdCo₅ single crystal. , 2010, Physical review letters.

[25]  N. Oliveira,et al.  Giant magnetocaloric and barocaloric effects in Mn(As1−xSbx) , 2010 .

[26]  H. Szymczak,et al.  Cooling by adiabatic pressure application in La0.7Ca0.3MnO3 magnetocaloric effect material , 2010 .

[27]  F. Hsu,et al.  Superconductivity in the PbO-type structure α-FeSe , 2008, Proceedings of the National Academy of Sciences.

[28]  N. Oliveira Entropy change upon magnetic field and pressure variations , 2007 .

[29]  X. Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[30]  R. Cava,et al.  Synthesis and properties of the Co7Se8-xSx and Ni7Se8-xSx solid solutions , 2005 .

[31]  Z. Arnold,et al.  High pressure cells for magnetic measurements—Destruction and functional tests , 2004 .

[32]  R. Withers,et al.  The crystal structures of Co3Se4 and Co7Se8 , 2004 .

[33]  T. Strässle,et al.  Magnetic cooling by the application of external pressure in rare-earth compounds , 2003 .

[34]  Vitalij K. Pecharsky,et al.  Magnetocaloric effect from indirect measurements: Magnetization and heat capacity , 1999 .

[35]  Philippe Lacorre,et al.  COOLING BY ADIABATIC PRESSURE APPLICATION IN PR1-XLAXNIO3 , 1998 .

[36]  K. Murata,et al.  Pt resistor thermometry and pressure calibration in a clamped pressure cell with the medium, Daphne 7373 , 1997 .

[37]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[38]  I. H. Cho,et al.  Crystallographic and magnetic structures of Fe7Se8 at low temperature (4–78 K) , 1997 .

[39]  Y. Yamaguchi,et al.  The effect of pressure on the electronic states of FeS and studied by Mössbauer spectroscopy , 1997 .

[40]  R. Chahine,et al.  Magnetic measurements: A powerful tool in magnetic refrigerator design , 1995 .

[41]  T. Kaneko,et al.  Pressure-induced phase transition in Fe-Se and Fe-S systems with a NiAs-type structure , 1992 .

[42]  H. Okamoto The fese (ironselenium) system , 1991 .

[43]  T. Kamimura CORRELATION BETWEEN MAGNETISM AND LATTICE SPACING c IN COMPOUNDS WITH NiAs-TYPE STRUCTURES , 1988 .

[44]  P. Terzieff The paramagnetism of transition metal substituted Fe7Se8 , 1982 .

[45]  A. Theodossiou,et al.  Thermal diffusivity in pyrrhotite (Fe7S8) , 1982 .

[46]  K. Komarek,et al.  The antiferromagnetic and ferrimagnetic properties of iron selenides with NiAs-type structure , 1978 .

[47]  T. Kamimura On the Spin Axis Transition in Fe7Se8(3c) , 1977 .

[48]  A. Zvezdin,et al.  Spin-reorientation transitions in rare-earth magnets , 1976 .

[49]  R. J. Tremblay,et al.  Mössbauer effect in single-crystal Fe1−xS , 1976 .

[50]  A. Okazaki,et al.  Neutron Diffraction Study of Fe 7 Se 8 . II , 1970 .

[51]  K. Adachi,et al.  Origin of Magnetic Anisotropy Energy of Fe7S8 and Fe7Se8 , 1968 .

[52]  B. Banerjee On a generalised approach to first and second order magnetic transitions , 1964 .

[53]  K. Hirakawa,et al.  Structural Study of Iron Selenides FeSe x . I Ordered Arrangement of Defects of Fe Atoms , 1956 .

[54]  W. Giauque,et al.  Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd 2 (SO 4 ) 3 .8H 2 O , 1933 .