Face recognition using multiple recognizers

In this paper we have presented a fusion of three face recognizers, LFA, LBA and KDDA, which combines the three confidence measure factors (CMFs) using a RBF neural network. This strategy is used to increase the accuracy of the face recognition system. The recognizer is tested on AT&T-ORL, AR and IITK face database and the results are found to be more than 95%.

[1]  Anil K. Jain,et al.  On-line fingerprint verification , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[2]  Horst Bunke,et al.  Combination of face classifiers for person identification , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[3]  Konstantinos N. Plataniotis,et al.  Face recognition using kernel direct discriminant analysis algorithms , 2003, IEEE Trans. Neural Networks.

[4]  Gian Luca Marcialis,et al.  Fusion of LDA and PCA for Face Verification , 2002, Biometric Authentication.

[5]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Francis Galton,et al.  Personal Identification and Description , 2022, Nature.

[7]  Abdul Nasser S. Abu-Rezq,et al.  Combined Classifiers for Invariant Face Recognition , 2000, Pattern Analysis & Applications.

[8]  Penio S. Penev,et al.  Local feature analysis: A general statistical theory for object representation , 1996 .

[9]  Olivier Y. de Vel,et al.  Line-Based Face Recognition under Varying Pose , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  F. Galton Personal Identification and Description , Nature.

[11]  Personal Identification and Descriptions , 1888, Nature.

[12]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.