The interior structure of Mars: Implications from SNC meteorites

Two end-member models of Mars' present interior structure are presented: the first model is optimized to satisfy the geochemical data derived from the SNC meteorites in terms of the bulk chondritic ratio Fe/Si = 1.71, while the second model is optimized to satisfy the most probable maximum value C = 0.366 x M p r p 2 of the polar moment of inertia factor. Hydrostatic equilibrium and stationary heat transfer are assumed, and the basic differential equations for the mechanical and thermal structure are solved numerically together with an isothermal Murnaghan-Birch type equation of state truncated in Eulerian strain at forth order. We obtain the radial distribution of mass, hydrostatic pressure, gravity, temperature, and heat flow density along with the corresponding density stratification, viscosity profiles, and the global seismic velocity structure of model Mars. The first model being consistent with the geochemical requirement produces C = 0.357 x M p r p 2 , whereas the second model commensurate with the geophysical constraint gives Fe/Si = 1.35. The calculated central pressure is about 40 GPa in both models, and the central temperature is in the 2000 to 2200 K range. The model calculations suggest a Fe-Ni-FeS core a little less than one half of the planetary radius in size surrounded by a silicate mantle subdivided into lower spinel and upper olivine layers and overlain by a 100- to 250-km thick basaltic crust and a surface heatflow density of 25 to 30 mW m -2 . In both models the pressure in the mantle is not sufficient for the spinel to perovskite transition to occur. The present thermal lithosphere is estimated to be about 500 km thick and to be subdivided into a 300-km-thick outermost rheological lithosphere and an underlying thermal boundary layer of mantle convection. Given the core sulfur content of 14 wt% as derived from SNC meteorites, the Martian core is found to be entirely molten, implying the nonoperation of a self-sustained dynamo due to the absence of sufficiently vigorous convection.

[1]  H. Mao,et al.  Static compression of iron to 300 GPa and Fe(0.8)Ni(0.2) alloy to 260 GPa - Implications for composition of the core , 1990 .

[2]  B. K. Smith,et al.  Transient creep in orthosilicates , 1987 .

[3]  O. Anderson,et al.  A new thermodynamic approach for high-pressure physics , 1995 .

[4]  Joshua R. Smith,et al.  The mantle of Mars: Some possible geological implications of its high density , 1978 .

[5]  A. Cook The moment of inertia of Mars and the existence of a core , 1977 .

[6]  Frank D. Stacey,et al.  Applications of thermodynamics to fundamental earth physics , 1977 .

[7]  John W. Morgan,et al.  Chemical composition of Mars , 1979 .

[8]  Georges Balmino,et al.  Gravity field model of mars in spherical harmonics up to degree and order eighteen , 1982 .

[9]  D. L. Anderson Theory of Earth , 2014 .

[10]  R. Nerem,et al.  An inversion of gravity and topography for mantle and crustal structure on Mars , 1996 .

[11]  R. Liebermann,et al.  On the activation volume for creep and its variation with depth in the Earth's lower mantle , 1984 .

[12]  Bruce G. Bills,et al.  Mars topography harmonics and geophysical implications , 1978 .

[13]  Bruce M. Jakosky,et al.  The planet Mars - From antiquity to the present , 1992 .

[14]  Bruce G. Bills,et al.  The moments of inertia of Mars , 1989 .

[15]  J. Watt,et al.  The Elastic Properties of Composite Materials , 1976 .

[16]  The geochemical model of Mars: An estimation from the high pressure experiments , 1992 .

[17]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[18]  C. Bina,et al.  CALCULATION OF ELASTIC PROPERTIES FROM THERMODYNAMIC EQUATION OF STATE PRINCIPLES , 1992 .

[19]  G. Born Mars physical parameters as determined from Mariner 9 observations of the natural satellites , 1973 .

[20]  Alexandra Navrotsky,et al.  Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application , 1989 .

[21]  O. Anderson,et al.  High‐temperature elastic constant data on minerals relevant to geophysics , 1992 .

[22]  R. Boehler The phase diagram of iron to 430 kbar , 1986 .

[23]  A. Binder Internal structure of Mars , 1969 .

[24]  D. Yuen,et al.  Phase transitions in the Martian mantle and the generation of megaplumes , 1995 .

[25]  R. A. Robie,et al.  Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10[5] pascals) pressure and at higher temperatures , 1995 .

[26]  H. Wänke,et al.  Volatiles on Earth and Mars: A comparison , 1987 .

[27]  Sean C. Solomon,et al.  Evolution of the Tharsis Province of Mars: The importance of heterogeneous lithospheric thickness and volcanic construction , 1982 .

[28]  H. McSween SNC meteorites: Clues to Martian petrologic evolution? , 1985 .

[29]  M. Toksöz,et al.  The thermal state and internal structure of Mars , 1974 .

[30]  R. Ash,et al.  A 4-Gyr shock age for a martian meteorite and implications for the cratering history of Mars , 1996, Nature.

[31]  G. Born,et al.  Secular acceleration of Phobos and Q of Mars. [tidal dissipation function of Mars] , 1976 .

[32]  L. Shampine,et al.  Computer solution of ordinary differential equations : the initial value problem , 1975 .

[33]  Ulrich R. Christensen,et al.  A one-plume model of martian mantle convection , 1996, Nature.

[34]  H. Wänke Chemistry, accretion, and evolution of Mars , 1991 .

[35]  Tilman Spohn,et al.  Thermal history of Mars and the sulfur content of its core , 1990 .

[36]  F. D. Stacey,et al.  Finite strain theories and comparisons with seismological data , 1981 .

[37]  J. Leliwa-kopystyński,et al.  The effect of material parameters on the shape of the phase separation surfaces within the earth's mantle , 1980 .

[38]  Harry Y. McSween,et al.  What we have learned about Mars from SNC meteorites , 1994 .

[39]  Introduction to the Physics of the Earth's Interior , 1991 .

[40]  A. Treiman A petrographic history of martian meteorite ALH84001: Two shocks and an ancient age , 1995 .

[41]  H. Mao,et al.  Structure and Density of FeS at High Pressure and High Temperature and the Internal Structure of Mars , 1995, Science.

[42]  H. Wänke,et al.  Earth and Mars: Water inventories as clues to accretional histories , 1992 .

[43]  K. Goettel Density of the mantle of Mars , 1981 .

[44]  A. Binder Internal structure of Mars , 1969 .

[45]  J. Weertman,et al.  High Temperature Creep of Rock and Mantle Viscosity , 1975 .

[46]  R. Reasenberg,et al.  The moment of inertia and isostasy of Mars , 1977 .

[47]  V. L. Barsukov,et al.  Determination of the elemental composition of martian rocks from Phobos 2 , 1989, Nature.

[48]  M. Toksöz,et al.  Thermal evolutions of the terrestrial planets , 1975 .

[49]  G. Schubert,et al.  Magnetism and thermal evolution of the terrestrial planets , 1983 .

[50]  D. Mittlefehldt,et al.  ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .

[51]  W. M. Kaula The moment of inertia of Mars , 1979 .

[52]  John C. Smith,et al.  A critical assessment of estimation methods for activation volume , 1981 .

[53]  Equations of state of iron sulfide and constraints on the sulfur content of the Earth , 1979 .

[54]  R. Phillips,et al.  An isostatic model for the Tharsis ProvinceMars , 1979 .

[55]  H. Waenke,et al.  The bulk composition, mineralogy and internal structure of Mars , 1992 .

[56]  R. Boehler,et al.  Melting, thermal expansion, and phase transitions of iron at high pressures , 1990 .

[57]  M. Bickle,et al.  The Volume and Composition of Melt Generated by Extension of the Lithosphere , 1988 .

[58]  Y. Fei,et al.  Mineralogy of the Martian interior up to core‐mantle boundary pressures , 1997 .

[59]  D. L. Anderson,et al.  Theoretical models for Mars and their seismic properties , 1978 .

[60]  A. Hunter,et al.  The Planets: Their Origin and Development , 1952 .

[61]  G. Ranalli Rheology of the Earth : Deformation and Flow Processes in Geophysics and Geodynamics , 1987 .

[62]  W. Munk,et al.  Astronomy-Geophysics. (Book Reviews: The Rotation of the Earth. A geophysical discussion) , 1975 .

[63]  D. L. Anderson Internal constitution of Mars. , 1972 .

[64]  A. Hofmeister Pressure derivatives of the bulk modulus , 1991 .

[65]  R. Meissner,et al.  Structure and evolution of the terrestrial planets , 1986 .

[66]  T. Spohn,et al.  Mantle differentiation and the crustal dichotomy of Mars , 1993 .

[67]  P. Janle Bouguer gravity profiles across the highland-lowland escarpment on Mars , 1983 .

[68]  A. Lukk,et al.  Heterogeneities in the mantle inferred from seismic and gravity data , 1980 .

[69]  R. Reynolds,et al.  Calculations on the composition of the terrestrial planets , 1969 .

[70]  H. Wänke,et al.  Chemical composition and accretion history of terrestrial planets , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[71]  T. Spohn Mantle differentiation and thermal evolution of Mars, Mercury, and Venus , 1991 .

[72]  A. Nagy,et al.  The Ancient Oxygen Exosphere of Mars: Implications for Atmosphere Evolution , 1991 .

[73]  R. Boehler,et al.  Thermodynamics and behavior of γ-Mg2SiO4 at high pressure: Implications for Mg2SiO4 phase equilibrium , 1994 .

[74]  M. Toksöz,et al.  Internal structure and properties of Mars , 1977 .

[75]  D. Yuen,et al.  Phase transitions in the Martian mantle: Implications for the planet's volcanic history , 1996 .