The interior structure of Mars: Implications from SNC meteorites
暂无分享,去创建一个
[1] H. Mao,et al. Static compression of iron to 300 GPa and Fe(0.8)Ni(0.2) alloy to 260 GPa - Implications for composition of the core , 1990 .
[2] B. K. Smith,et al. Transient creep in orthosilicates , 1987 .
[3] O. Anderson,et al. A new thermodynamic approach for high-pressure physics , 1995 .
[4] Joshua R. Smith,et al. The mantle of Mars: Some possible geological implications of its high density , 1978 .
[5] A. Cook. The moment of inertia of Mars and the existence of a core , 1977 .
[6] Frank D. Stacey,et al. Applications of thermodynamics to fundamental earth physics , 1977 .
[7] John W. Morgan,et al. Chemical composition of Mars , 1979 .
[8] Georges Balmino,et al. Gravity field model of mars in spherical harmonics up to degree and order eighteen , 1982 .
[9] D. L. Anderson. Theory of Earth , 2014 .
[10] R. Nerem,et al. An inversion of gravity and topography for mantle and crustal structure on Mars , 1996 .
[11] R. Liebermann,et al. On the activation volume for creep and its variation with depth in the Earth's lower mantle , 1984 .
[12] Bruce G. Bills,et al. Mars topography harmonics and geophysical implications , 1978 .
[13] Bruce M. Jakosky,et al. The planet Mars - From antiquity to the present , 1992 .
[14] Bruce G. Bills,et al. The moments of inertia of Mars , 1989 .
[15] J. Watt,et al. The Elastic Properties of Composite Materials , 1976 .
[16] The geochemical model of Mars: An estimation from the high pressure experiments , 1992 .
[17] Walter H. F. Smith,et al. Free software helps map and display data , 1991 .
[18] C. Bina,et al. CALCULATION OF ELASTIC PROPERTIES FROM THERMODYNAMIC EQUATION OF STATE PRINCIPLES , 1992 .
[19] G. Born. Mars physical parameters as determined from Mariner 9 observations of the natural satellites , 1973 .
[20] Alexandra Navrotsky,et al. Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application , 1989 .
[21] O. Anderson,et al. High‐temperature elastic constant data on minerals relevant to geophysics , 1992 .
[22] R. Boehler. The phase diagram of iron to 430 kbar , 1986 .
[23] A. Binder. Internal structure of Mars , 1969 .
[24] D. Yuen,et al. Phase transitions in the Martian mantle and the generation of megaplumes , 1995 .
[25] R. A. Robie,et al. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10[5] pascals) pressure and at higher temperatures , 1995 .
[26] H. Wänke,et al. Volatiles on Earth and Mars: A comparison , 1987 .
[27] Sean C. Solomon,et al. Evolution of the Tharsis Province of Mars: The importance of heterogeneous lithospheric thickness and volcanic construction , 1982 .
[28] H. McSween. SNC meteorites: Clues to Martian petrologic evolution? , 1985 .
[29] M. Toksöz,et al. The thermal state and internal structure of Mars , 1974 .
[30] R. Ash,et al. A 4-Gyr shock age for a martian meteorite and implications for the cratering history of Mars , 1996, Nature.
[31] G. Born,et al. Secular acceleration of Phobos and Q of Mars. [tidal dissipation function of Mars] , 1976 .
[32] L. Shampine,et al. Computer solution of ordinary differential equations : the initial value problem , 1975 .
[33] Ulrich R. Christensen,et al. A one-plume model of martian mantle convection , 1996, Nature.
[34] H. Wänke. Chemistry, accretion, and evolution of Mars , 1991 .
[35] Tilman Spohn,et al. Thermal history of Mars and the sulfur content of its core , 1990 .
[36] F. D. Stacey,et al. Finite strain theories and comparisons with seismological data , 1981 .
[37] J. Leliwa-kopystyński,et al. The effect of material parameters on the shape of the phase separation surfaces within the earth's mantle , 1980 .
[38] Harry Y. McSween,et al. What we have learned about Mars from SNC meteorites , 1994 .
[39] Introduction to the Physics of the Earth's Interior , 1991 .
[40] A. Treiman. A petrographic history of martian meteorite ALH84001: Two shocks and an ancient age , 1995 .
[41] H. Mao,et al. Structure and Density of FeS at High Pressure and High Temperature and the Internal Structure of Mars , 1995, Science.
[42] H. Wänke,et al. Earth and Mars: Water inventories as clues to accretional histories , 1992 .
[43] K. Goettel. Density of the mantle of Mars , 1981 .
[44] A. Binder. Internal structure of Mars , 1969 .
[45] J. Weertman,et al. High Temperature Creep of Rock and Mantle Viscosity , 1975 .
[46] R. Reasenberg,et al. The moment of inertia and isostasy of Mars , 1977 .
[47] V. L. Barsukov,et al. Determination of the elemental composition of martian rocks from Phobos 2 , 1989, Nature.
[48] M. Toksöz,et al. Thermal evolutions of the terrestrial planets , 1975 .
[49] G. Schubert,et al. Magnetism and thermal evolution of the terrestrial planets , 1983 .
[50] D. Mittlefehldt,et al. ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .
[51] W. M. Kaula. The moment of inertia of Mars , 1979 .
[52] John C. Smith,et al. A critical assessment of estimation methods for activation volume , 1981 .
[53] Equations of state of iron sulfide and constraints on the sulfur content of the Earth , 1979 .
[54] R. Phillips,et al. An isostatic model for the Tharsis ProvinceMars , 1979 .
[55] H. Waenke,et al. The bulk composition, mineralogy and internal structure of Mars , 1992 .
[56] R. Boehler,et al. Melting, thermal expansion, and phase transitions of iron at high pressures , 1990 .
[57] M. Bickle,et al. The Volume and Composition of Melt Generated by Extension of the Lithosphere , 1988 .
[58] Y. Fei,et al. Mineralogy of the Martian interior up to core‐mantle boundary pressures , 1997 .
[59] D. L. Anderson,et al. Theoretical models for Mars and their seismic properties , 1978 .
[60] A. Hunter,et al. The Planets: Their Origin and Development , 1952 .
[61] G. Ranalli. Rheology of the Earth : Deformation and Flow Processes in Geophysics and Geodynamics , 1987 .
[62] W. Munk,et al. Astronomy-Geophysics. (Book Reviews: The Rotation of the Earth. A geophysical discussion) , 1975 .
[63] D. L. Anderson. Internal constitution of Mars. , 1972 .
[64] A. Hofmeister. Pressure derivatives of the bulk modulus , 1991 .
[65] R. Meissner,et al. Structure and evolution of the terrestrial planets , 1986 .
[66] T. Spohn,et al. Mantle differentiation and the crustal dichotomy of Mars , 1993 .
[67] P. Janle. Bouguer gravity profiles across the highland-lowland escarpment on Mars , 1983 .
[68] A. Lukk,et al. Heterogeneities in the mantle inferred from seismic and gravity data , 1980 .
[69] R. Reynolds,et al. Calculations on the composition of the terrestrial planets , 1969 .
[70] H. Wänke,et al. Chemical composition and accretion history of terrestrial planets , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[71] T. Spohn. Mantle differentiation and thermal evolution of Mars, Mercury, and Venus , 1991 .
[72] A. Nagy,et al. The Ancient Oxygen Exosphere of Mars: Implications for Atmosphere Evolution , 1991 .
[73] R. Boehler,et al. Thermodynamics and behavior of γ-Mg2SiO4 at high pressure: Implications for Mg2SiO4 phase equilibrium , 1994 .
[74] M. Toksöz,et al. Internal structure and properties of Mars , 1977 .
[75] D. Yuen,et al. Phase transitions in the Martian mantle: Implications for the planet's volcanic history , 1996 .