Optimization and applications of echo state networks with leaky- integrator neurons

[1]  Jürgen Schmidhuber,et al.  Training Recurrent Networks by Evolino , 2007, Neural Computation.

[2]  Eduardo D. Sontag,et al.  Computational Aspects of Feedback in Neural Circuits , 2006, PLoS Comput. Biol..

[3]  Peter Michael Young,et al.  A tighter bound for the echo state property , 2006, IEEE Transactions on Neural Networks.

[4]  Mantas Lukoševičius,et al.  Time Warping Invariant Echo State Networks , 2006 .

[5]  Dean V Buonomano,et al.  A learning rule for the emergence of stable dynamics and timing in recurrent networks. , 2005, Journal of neurophysiology.

[6]  Marc Strickert,et al.  Self-organizing neural networks for sequence processing , 2005 .

[7]  Tijn van der Zant,et al.  Finding good Echo State Networks to control an underwater robot using evolutionary computations , 2004 .

[8]  D. Buonomano,et al.  The neural basis of temporal processing. , 2004, Annual review of neuroscience.

[9]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[10]  M. Hinder,et al.  The Case for an Internal Dynamics Model versus Equilibrium Point Control in Human Movement , 2003, The Journal of physiology.

[11]  Malur K. Sundareshan,et al.  Trajectory generation and modulation using dynamic neural networks , 2003, IEEE Trans. Neural Networks.

[12]  Robert P. W. Duin,et al.  The combining classifier: to train or not to train? , 2002, Object recognition supported by user interaction for service robots.

[13]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[14]  Pierre Geurts,et al.  Pattern Extraction for Time Series Classification , 2001, PKDD.

[15]  Mineichi Kudo,et al.  Multidimensional curve classification using passing-through regions , 1999, Pattern Recognit. Lett..

[16]  G B Stanley,et al.  Reconstruction of Natural Scenes from Ensemble Responses in the Lateral Geniculate Nucleus , 1999, The Journal of Neuroscience.

[17]  B. Farhang-Boroujeny,et al.  Adaptive Filters: Theory and Applications , 1999 .

[18]  Josef Kittler,et al.  Combining classifiers , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[19]  Barak A. Pearlmutter Gradient calculations for dynamic recurrent neural networks: a survey , 1995, IEEE Trans. Neural Networks.

[20]  Guo-Zheng Sun,et al.  Time Warping Invariant Neural Networks , 1992, NIPS.

[21]  Roberto Pieraccini,et al.  Time-Warping Network: A Hybrid Framework for Speech Recognition , 1991, NIPS.

[22]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[23]  F. Itakura,et al.  Minimum prediction residual principle applied to speech recognition , 1975 .

[24]  José Carlos Príncipe,et al.  Analysis and Design of Echo State Networks , 2007, Neural Computation.

[25]  Jochen J. Steil,et al.  Analyzing the weight dynamics of recurrent learning algorithms , 2005, Neurocomputing.

[26]  David Barber,et al.  Dynamic Bayesian Networks with Deterministic Latent Tables , 2002, NIPS.

[27]  Herbert Jaeger,et al.  Adaptive Nonlinear System Identification with Echo State Networks , 2002, NIPS.

[28]  John F. Kolen,et al.  Gradient Calculations for Dynamic Recurrent Neural Networks , 2001 .

[29]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .