A fault-tolerant non-Clifford gate for the surface code in two dimensions

We complete a universal set of fault-tolerant quantum logic gates for a two-dimensional surface code architecture. Fault-tolerant logic gates will consume a large proportion of the resources of a two-dimensional quantum computing architecture. Here we show how to perform a fault-tolerant non-Clifford gate with the surface code; a quantum error-correcting code now under intensive development. This alleviates the need for distillation or higher-dimensional components to complete a universal gate set. The operation uses both local transversal gates and code deformations over a time that scales with the size of the qubit array. An important component of the gate is a just-in-time decoder. These decoding algorithms allow us to draw upon the advantages of three-dimensional models using only a two-dimensional array of live qubits. Our gate is completed using parity checks of weight no greater than four. We therefore expect it to be amenable with near-future technology. As the gate circumvents the need for magic-state distillation, it may reduce the resource overhead of surface-code quantum computation considerably.

[1]  Stephen D. Bartlett,et al.  Locality-Preserving Logical Operators in Topological Stabiliser Codes , 2017, 1709.00020.

[2]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[3]  Austin G. Fowler,et al.  Efficient magic state factories with a catalyzed|CCZ⟩to2|T⟩transformation , 2018, Quantum.

[4]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[5]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[6]  Earl T. Campbell,et al.  Quantum computation with realistic magic-state factories , 2016, 1605.07197.

[7]  Nicolas Delfosse,et al.  Decoding color codes by projection onto surface codes , 2013, ArXiv.

[8]  Stephen D. Bartlett,et al.  Stacked codes: Universal fault-tolerant quantum computation in a two-dimensional layout , 2015, 1509.04255.

[9]  Naomi H. Nickerson,et al.  Measurement based fault tolerance beyond foliation , 2018, 1810.09621.

[10]  Fernando Pastawski,et al.  Unfolding the color code , 2015, 1503.02065.

[11]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[12]  Benjamin J. Brown,et al.  Fault-tolerant error correction with the gauge color code , 2015, Nature Communications.

[13]  Benjamin J. Brown,et al.  Universal fault-tolerant measurement-based quantum computation , 2018, Physical Review Research.

[14]  A. Fowler,et al.  Efficient magic state factories with a catalyzed|CCZ⟩to2|T⟩transformation , 2018, Quantum.

[15]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[16]  H. Bombin,et al.  Dimensional Jump in Quantum Error Correction , 2014, 1412.5079.

[17]  H. Bombin Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.

[18]  Hector Bombin,et al.  Transversal gates and error propagation in 3D topological codes , 2018, 1810.09575.

[19]  Paolo Zanardi,et al.  String and membrane condensation on three-dimensional lattices , 2005 .

[20]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[21]  Benjamin J. Brown,et al.  Poking holes and cutting corners to achieve Clifford gates with the surface code , 2016, 1609.04673.

[22]  Jim Harrington,et al.  Gauge color codes in two dimensions , 2015, 1512.04193.

[23]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[24]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[25]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[26]  Maika Takita,et al.  Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture. , 2016, Physical review letters.

[27]  T. M. Stace,et al.  Foliated Quantum Error-Correcting Codes. , 2016, Physical review letters.

[28]  Andrew W. Cross,et al.  Doubled Color Codes , 2015, 1509.03239.

[29]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[30]  Jiannis K. Pachos,et al.  Quantum memories at finite temperature , 2014, 1411.6643.

[31]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[32]  Sean D Barrett,et al.  Fault tolerant quantum computation with very high threshold for loss errors. , 2010, Physical review letters.

[33]  Theodore J. Yoder,et al.  The disjointness of stabilizer codes and limitations on fault-tolerant logical gates , 2017, 1710.07256.

[34]  R. Raussendorf,et al.  Long-range quantum entanglement in noisy cluster states (6 pages) , 2004, quant-ph/0407255.

[35]  S. Bravyi,et al.  Quantum self-correction in the 3D cubic code model. , 2013, Physical review letters.

[36]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[37]  Fernando Pastawski,et al.  Fault-tolerant logical gates in quantum error-correcting codes , 2014, 1408.1720.

[38]  Walter Burke,et al.  Topological color code and symmetry-protected topological phases , 2015 .

[39]  Sergey Bravyi,et al.  Classification of topologically protected gates for local stabilizer codes. , 2012, Physical review letters.

[40]  Hector Bombin,et al.  2D quantum computation with 3D topological codes , 2018, 1810.09571.

[41]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[42]  David Poulin,et al.  Fault-tolerant conversion between the Steane and Reed-Muller quantum codes. , 2014, Physical review letters.

[43]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.