Adaptive tracking of enzymatic reactions with quantum light.

Enzymes are essential to maintain organisms alive. Some of the reactions they catalyze are associated with a change in reagents chirality, hence their activity can be tracked by using optical means. However, illumination affects enzyme activity: the challenge is to operate at low-intensity regime avoiding loss in sensitivity. Here we apply quantum phase estimation to real-time measurement of invertase enzymatic activity. Control of the probe at the quantum level demonstrates the potential for reducing invasiveness with optimized sensitivity at once. This preliminary effort, bringing together methods of quantum physics and biology, constitutes an important step towards full development of quantum sensors for biological systems.

[1]  B. Yurke,et al.  Squeezed-light-enhanced polarization interferometer. , 1987, Physical review letters.

[2]  Jeremy L O'Brien,et al.  Heralding two-photon and four-photon path entanglement on a chip. , 2010, Physical review letters.

[3]  Yaron Silberberg,et al.  Supersensitive polarization microscopy using NOON states of light. , 2014, Physical review letters.

[4]  H M Wiseman,et al.  Entanglement-enhanced measurement of a completely unknown phase , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[5]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[6]  Vitus Händchen,et al.  Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm. , 2014, Physical review letters.

[7]  J. Sumner,et al.  DINITROSALICYLIC ACID: A REAGENT FOR THE ESTIMATION OF SUGAR IN NORMAL AND DIABETIC URINE , 1921 .

[8]  M. Barbieri,et al.  Multiparameter approach to quantum phase estimation with limited visibility , 2018, Optica.

[9]  M. Chergui,et al.  Ultrafast broadband circular dichroism in the deep ultraviolet , 2019, Optica.

[10]  T. Harris,et al.  Measurement of enzyme activity. , 2009, Methods in enzymology.

[11]  D. Combes,et al.  Sucrose hydrolysis by invertase. Characterization of products and substrate inhibition , 1983 .

[12]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[13]  Cornelia Denz,et al.  Optical tweezers induced photodamage in living cells quantified with digital holographic phase microscopy , 2012, Photonics Europe.

[14]  Brian J. Smith,et al.  Real-world quantum sensors: evaluating resources for precision measurement. , 2010, Physical review letters.

[15]  Tobias Gehring,et al.  Ab initio quantum-enhanced optical phase estimation using real-time feedback control , 2015, Nature Photonics.

[16]  J. Dowling Quantum optical metrology – the lowdown on high-N00N states , 2008, 0904.0163.

[17]  Ilgaitis Prūsis,et al.  Nature of Photon , 2019 .

[18]  W. Marsden I and J , 2012 .

[19]  N. Godbout,et al.  Entanglement-enhanced probing of a delicate material system , 2012, Nature Photonics.

[20]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[21]  V. Verma,et al.  Unconditional violation of the shot-noise limit in photonic quantum metrology , 2017, 1707.08977.

[22]  M. W. Mitchell,et al.  Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.

[23]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[24]  Ying Li,et al.  Photonic polarization gears for ultra-sensitive angular measurements , 2013, Nature Communications.

[25]  G. Cooper The Cell: A Molecular Approach , 1996 .

[26]  Shigeki Takeuchi,et al.  An entanglement-enhanced microscope , 2013, Nature Communications.

[27]  G. Guo,et al.  Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing , 2018, Optica.

[28]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[29]  A. Zeilinger,et al.  Quantum optical rotatory dispersion , 2016, Science Advances.

[30]  G. M. Hale,et al.  Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. , 1973, Applied optics.

[31]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[32]  A. Amjadi,et al.  Effect of Low-Level Laser Irradiation on the Function of Glycated Catalase. , 2018, Journal of lasers in medical sciences.

[33]  K J Resch,et al.  Time-reversal and super-resolving phase measurements. , 2007, Physical review letters.

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  M. Barbieri,et al.  Quantum sensing for dynamical tracking of chemical processes , 2019, Physical Review A.

[36]  Jung-Min Choi,et al.  Industrial applications of enzyme biocatalysis: Current status and future aspects. , 2015, Biotechnology advances.

[37]  Charles Kervrann,et al.  Fast live simultaneous multiwavelength four-dimensional optical microscopy , 2010, Proceedings of the National Academy of Sciences.

[38]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[39]  Jian-Wei Pan,et al.  De Broglie wavelength of a non-local four-photon state , 2003, Nature.

[40]  Joachim Knittel,et al.  Biological measurement beyond the quantum limit , 2012, Nature Photonics.

[41]  Roberta Ramponi,et al.  Measuring protein concentration with entangled photons , 2011, 1109.3128.

[42]  Shuntaro Takeda,et al.  Quantum-Enhanced Optical-Phase Tracking , 2012, Science.