Synthetic aperture inversion for arbitrary flight paths in the presence of noise and clutter

This paper considers synthetic aperture radar and other synthetic aperture imaging systems from an arbitrary (known) flight path. We assume a single-scattering model for the radar data, and we assume that the ground topography is known but not necessarily flat. We focus on cases in which the antenna footprint is so large that the standard narrow-beam algorithms are not useful. For this case, (Nohan, CJ and Cheney, M, 2003) gave an explicit backprojection imaging formula that corrects for the ground topography, flight path, antenna beam pattern, source waveform, and other geometrical factors. In this paper, we show how to modify the backprojection algorithm to account for statistical information about noise and clutter.

[1]  Margaret Cheney,et al.  Synthetic aperture inversion for arbitrary flight paths and nonflat topography , 2003, IEEE Trans. Image Process..

[2]  Mehrdad Soumekh,et al.  Synthetic Aperture Radar Signal Processing with MATLAB Algorithms , 1999 .

[3]  James G. Berryman,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion. Interdisciplinary Applied Mathematics, Vol 13 , 2001 .

[4]  John A. Fawcett,et al.  Inversion of N-dimensional spherical averages , 1985 .

[5]  Charles Elachi,et al.  Spaceborne Radar Remote Sensing: Applications and Techniques , 1987 .

[6]  Riccardo Lanari,et al.  Synthetic Aperture Radar Processing , 1999 .

[7]  F. Rocca,et al.  SAR data focusing using seismic migration techniques , 1991 .

[8]  Eric Todd Quinto,et al.  Singularities of the X-ray transform and limited data tomography , 1993 .

[9]  Alain Grigis,et al.  Microlocal Analysis for Differential Operators: An Introduction , 1994 .

[10]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[11]  Lars M. H. Ulander,et al.  Ultra-wideband SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[12]  William W. Symes,et al.  Global solution of a linearized inverse problem for the wave equation , 1997 .

[13]  Lars M. H. Ulander,et al.  Development of VHF CARABAS II SAR , 1996, Defense, Security, and Sensing.

[14]  E. T. Quinto,et al.  Local Tomographic Methods in Sonar , 2000 .

[15]  L. Hörmander,et al.  Fourier integral operators. II , 1972 .

[16]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[17]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[18]  H Hellsten,et al.  An inverse method for the processing of synthetic aperture radar data , 1986 .

[19]  P. Lacomme,et al.  Synthetic Aperture Radar , 2001 .

[20]  Mehrdad Soumekh,et al.  Signal processing of wide bandwidth and wide beamwidth P-3 SAR data , 2001 .

[21]  William Rundell,et al.  Surveys on solution methods for inverse problems , 2000 .

[22]  F. Trèves Basic Linear Partial Differential Equations , 1975 .

[23]  L. Hörmander Fourier integral operators. I , 1995 .

[24]  W. Clem Karl,et al.  Superresolution and edge-preserving reconstruction of complex-valued synthetic aperture radar images , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[25]  Mehrdad Soumekh Wavefront-Based Synthetic Aperture Radar Signal Processing , 2001 .

[26]  D. Wehner High Resolution Radar , 1987 .

[27]  W. Carrara,et al.  Spotlight synthetic aperture radar : signal processing algorithms , 1995 .

[28]  M. Cheney,et al.  Synthetic aperture inversion , 2002 .

[29]  W. Clem Karl,et al.  Edge-preserving image reconstruction for coherent imaging applications , 2002, Proceedings. International Conference on Image Processing.

[30]  Gregory Beylkin,et al.  Linearized inverse scattering problems in acoustics and elasticity , 1990 .

[31]  Lars M. H. Ulander,et al.  Low-frequency ultrawideband array-antenna SAR for stationary and moving target imaging , 1999, Defense, Security, and Sensing.