Redox preconditioning deep cratonic lithosphere for kimberlite genesis – evidence from the central Slave Craton

[1]  C. Harris,et al.  Tectonic significance and redox state of Paleoproterozoic eclogite and pyroxenite components in the Slave cratonic mantle lithosphere, Voyageur kimberlite, Arctic Canada , 2017 .

[2]  C. Ottley,et al.  Highly saline fluids from a subducting slab as the source for fluid-rich diamonds , 2015, Nature.

[3]  M. Hirschmann,et al.  Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions , 2015 .

[4]  D. Frost,et al.  The Composition of Hydrous Partial Melts of Garnet Peridotite at 6 GPa: Implications for the Origin of Group II Kimberlites , 2014 .

[5]  D. Green,et al.  Experimental Study of the Influence of Water on Melting and Phase Assemblages in the Upper Mantle , 2014 .

[6]  D. Green,et al.  Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle , 2014, Scientific Reports.

[7]  Christine E. Miller,et al.  Mineral inclusions in fibrous diamonds: constraints on cratonic mantle refertilization and diamond formation , 2014, Mineralogy and Petrology.

[8]  B. Kjarsgaard,et al.  Mantle transition zone input to kimberlite magmatism near a subduction zone: Origin of anomalous Nd–Hf isotope systematics at Lac de Gras, Canada , 2013 .

[9]  M. D. Jonge,et al.  Quantitative mapping of the oxidative effects of mantle metasomatism , 2013 .

[10]  D. Ojwang,et al.  The oxidation state of the mantle and the extraction of carbon from Earth’s interior , 2013, Nature.

[11]  S. Weyer,et al.  Evolution of the South African mantle — A case study of garnet peridotites from the Finsch diamond mine (Kaapvaal craton); part 1: Inter-mineral trace element and isotopic equilibrium , 2012 .

[12]  A. Goncharov,et al.  Thermal state, oxygen fugacity and COH fluid speciation in cratonic lithospheric mantle: New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia , 2012 .

[13]  J. Hermann,et al.  An Experimental Study of Water in Nominally Anhydrous Minerals in the Upper Mantle near the Water-saturated Solidus , 2012 .

[14]  V. Kamenetsky,et al.  An oxygen fugacity profile through the Siberian Craton — Fe K-edge XANES determinations of Fe 3 + /∑Fe in garnets in peridotite xenoliths from the Udachnaya East kimberlite , 2012 .

[15]  J. Hermann,et al.  An Experimental Study of Carbonated Eclogite at 3·5–5·5 GPa—Implications for Silicate and Carbonate Metasomatism in the Cratonic Mantle , 2012 .

[16]  A. Girnis,et al.  Formation of primary kimberlite melts – Constraints from experiments at 6–12 GPa and variable CO2/H2O , 2011 .

[17]  C. Ryan,et al.  The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron , 2011 .

[18]  D. Frost,et al.  Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages , 2010 .

[19]  A. Berry,et al.  A XANES calibration for determining the oxidation state of iron in mantle garnet , 2010 .

[20]  D. Green,et al.  Water and its influence on the lithosphere–asthenosphere boundary , 2010, Nature.

[21]  M. Hirschmann,et al.  The deep carbon cycle and melting in Earth's interior , 2010 .

[22]  R. Luth,et al.  Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada , 2010 .

[23]  P. Nimis,et al.  Internally consistent geothermometers for garnet peridotites and pyroxenites , 2010 .

[24]  A. Woodland,et al.  Thermal state and redox conditions of the Kaapvaal mantle: A study of xenoliths from the Finsch mine, South Africa , 2009 .

[25]  A. Rosenthal,et al.  The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar , 2009 .

[26]  A. Rosenthal,et al.  Petrogenesis of strongly alkaline primitive volcanic rocks at the propagating tip of the western branch of the East African Rift , 2009 .

[27]  C. McCammon,et al.  Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism , 2009 .

[28]  B. Kjarsgaard,et al.  Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes , 2008 .

[29]  D. Frost,et al.  The Redox State of Earth's Mantle , 2008 .

[30]  Y. Lahaye,et al.  Experimental Melting of Carbonated Peridotite at 6-10 GPa , 2007 .

[31]  W. Griffin,et al.  Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada , 2004 .

[32]  R. Creaser,et al.  Macrocrystal phlogopite Rb–Sr dates for the Ekati property kimberlites, Slave Province, Canada: evidence for multiple intrusive episodes in the Paleocene and Eocene , 2004 .

[33]  A. Menzies,et al.  An updated classification scheme for mantle-derived garnet, for use by diamond explorers , 2004 .

[34]  A. Menzies,et al.  Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, N.W.T., Canada: major element compositions and implications for the lithosphere beneath the central Slave craton , 2004 .

[35]  R. Carlson,et al.  Hf Isotope Systematics of Kimberlites and their Megacrysts: New Constraints on their Source Regions , 2004 .

[36]  A. Woodland,et al.  Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa , 2003 .

[37]  W. Griffin,et al.  Layered Mantle Lithosphere in the Lac de Gras Area, Slave Craton: Composition, Structure and Origin , 1999 .

[38]  F. R. Boyd The Origin of Cratonic Peridotites: A Major-Element Approach , 1998 .

[39]  K. Viljoen,et al.  Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds , 1998 .

[40]  S. Eggins,et al.  Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS , 1998 .

[41]  S. Jackson,et al.  A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials , 1997 .

[42]  W. Griffin,et al.  QUANTITATIVE ANALYSIS OF TRACE ELEMENTS IN GEOLOGICAL MATERIALS BY LASER ABLATION ICPMS: INSTRUMENTAL OPERATING CONDITIONS AND CALIBRATION VALUES OF NIST GLASSES , 1996 .

[43]  H. O’Neill,et al.  Distribution of Ferric Iron in some Upper-Mantle Assemblages , 1996 .

[44]  A. Girnis,et al.  Origin of Group 1A kimberlites: Fluid-saturated melting experiments at 45–55 kbar , 1995 .

[45]  W. Griffin,et al.  Trace elements in indicator minerals: area selection and target evaluation in diamond exploration , 1995 .

[46]  B. Wood,et al.  Experimental tests of garnet peridotite oxygen barometry , 1995 .

[47]  F. Bea,et al.  Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study) , 1994 .

[48]  A. Woodland,et al.  A crystallographic and mössbauer spectroscopy study of Fe32+Al2Si3O12-Fe32+Fe23+Si3O12, (almandine-“skiagite”) and Ca3 Fe23+Si3O12-Fe32+Fe23+Si3O12 (andradite-“skiagite”) garnet solid solutions , 1994 .

[49]  R. Luth Diamonds, Eclogites, and the Oxidation State of the Earth's Mantle , 1993, Science.

[50]  C. Hawkesworth,et al.  The petrogenesis of group 2 ultrapotassic kimberlites from Finsch Mine, South Africa , 1992 .

[51]  S. Foley Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints , 1992 .

[52]  P. Kelemen,et al.  Formation of harzburgite by pervasive melt/rock reaction in the upper mantle , 1992, Nature.

[53]  T. Köhler,et al.  Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers , 1990 .

[54]  D. Canil,et al.  Phase relations in peridotite+CO2 Systems to 12 GPa: Implications for the origin of kimberlite and carbonate stability in the Earth's upper mantle , 1990 .

[55]  A. Saunders,et al.  Magmatism in the Ocean Basins , 1989 .

[56]  D. Green,et al.  Measurement of reduced peridotite-C-O-H solidus and implications for redox melting of the mantle , 1988, Nature.

[57]  H. O’Neill,et al.  The Olivine—Orthopyroxene—Spinel Oxygen Geobarometer, the Nickel Precipitation Curve, and the Oxygen Fugacity of the Earth's Upper Mantle , 1987 .

[58]  B. Wood,et al.  An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer , 1979 .

[59]  H. Pollack,et al.  On the regional variation of heat flow, geotherms, and lithospheric thickness☆ , 1977 .

[60]  G. Kennedy,et al.  The equilibrium boundary between graphite and diamond , 1976 .

[61]  V. Kamenetsky,et al.  Relationships between oxygen fugacity and metasomatism in the Kaapvaal subcratonic mantle, represented by garnet peridotite xenoliths in the Wesselton kimberlite, South Africa , 2015 .

[62]  S. Foley A Reappraisal of Redox Melting in the Earth’s Mantle as a Function of Tectonic Setting and Time , 2011 .

[63]  W. McDonough,et al.  The composition of peridotites and their minerals: a laser-ablation ICP–MS study , 1998 .

[64]  B. Wood,et al.  Ferric iron in mantle-derived garnets , 1990 .