Three tiers of genome evolution in reptiles.

Characterization of reptilian genomes is essential for understanding the overall diversity and evolution of amniote genomes, because reptiles, which include birds, constitute a major fraction of the amniote evolutionary tree. To better understand the evolution and diversity of genomic characteristics in Reptilia, we conducted comparative analyses of online sequence data from Alligator mississippiensis (alligator) and Sphenodon punctatus (tuatara) as well as genome size and karyological data from a wide range of reptilian species. At the whole-genome and chromosomal tiers of organization, we find that reptilian genome size distribution is consistent with a model of continuous gradual evolution while genomic compartmentalization, as manifested in the number of microchromosomes and macrochromosomes, appears to have undergone early rapid change. At the sequence level, the third genomic tier, we find that exon size in Alligator is distributed in a pattern matching that of exons in Gallus (chicken), especially in the 101-200 bp size class. A small spike in the fraction of exons in the 301 bp-1 kb size class is also observed for Alligator, but more so for Sphenodon. For introns, we find that members of Reptilia have a larger fraction of introns within the 101 bp-2 kb size class and a lower fraction of introns within the 5-30 kb size class than do mammals. These findings suggest that the mode of reptilian genome evolution varies across three hierarchical levels of the genome, a pattern consistent with a mosaic model of genomic evolution.

[1]  Miriam K. Konkel,et al.  Genome analysis of the platypus reveals unique signatures of evolution , 2008, Nature.

[2]  P. Green 2x genomes--does depth matter? , 2007, Genome research.

[3]  Michael S. Y. Lee,et al.  Phylogeny of snakes (Serpentes): Combining morphological and molecular data in likelihood, Bayesian and parsimony analyses , 2007 .

[4]  O. Bininda-Emonds,et al.  When genes meet nomenclature: tortoise phylogeny and the shifting generic concepts of Testudo and Geochelone. , 2007, Zoology.

[5]  Y. Kohara,et al.  Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. , 2007, Genome research.

[6]  H. Ellegren Molecular evolutionary genomics of birds , 2007, Cytogenetic and Genome Research.

[7]  D. Mindell,et al.  Nuclear DNA does not reconcile ‘rocks’ and ‘clocks’ in Neoaves: a comment on Ericson et al. , 2007, Biology Letters.

[8]  M. Pagel,et al.  Origin of avian genome size and structure in non-avian dinosaurs , 2007, Nature.

[9]  Jun S. Liu,et al.  Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome , 2007, Proceedings of the National Academy of Sciences.

[10]  Y. Kumazawa Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations. , 2007, Gene.

[11]  A. Couloux,et al.  The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. , 2007, Comptes rendus biologies.

[12]  G. Bernardi,et al.  DNA methylation in reptiles. , 2006, Gene.

[13]  T. Parsons,et al.  Diversification of Neoaves: integration of molecular sequence data and fossils , 2006, Biology Letters.

[14]  Andreas Prlic,et al.  Ensembl 2007 , 2006, Nucleic Acids Res..

[15]  A. Shedlock Phylogenomic investigation of CR1 LINE diversity in reptiles. , 2006, Systematic biology.

[16]  M. Benton,et al.  Paleontological evidence to date the tree of life. , 2006, Molecular biology and evolution.

[17]  Hans H. Cheng,et al.  Genetic Mapping in a Natural Population of Collared Flycatchers (Ficedula albicollis): Conserved Synteny but Gene Order Rearrangements on the Avian Z Chromosome , 2006, Genetics.

[18]  Erik Axelsson,et al.  Strong regional biases in nucleotide substitution in the chicken genome. , 2006, Molecular biology and evolution.

[19]  M. Lynch The origins of eukaryotic gene structure. , 2006, Molecular biology and evolution.

[20]  R. Gregory The evolution of the genome , 2005 .

[21]  E. Olmo Rate of Chromosome changes and Speciation in Reptiles , 2005, Genetica.

[22]  F. Burbrink,et al.  Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. , 2005, Molecular phylogenetics and evolution.

[23]  James G. Ogg,et al.  A Geologic Time Scale 2004: CONCEPTS AND METHODS , 2005 .

[24]  Daniel J. Blankenberg,et al.  Galaxy: a platform for interactive large-scale genome analysis. , 2005, Genome research.

[25]  S. Hedges,et al.  The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. , 2005, Comptes rendus biologies.

[26]  H. Shaffer,et al.  Assessing Concordance of Fossil Calibration Points in Molecular Clock Studies: An Example Using Turtles , 2004, The American Naturalist.

[27]  Colin N. Dewey,et al.  Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution , 2004, Nature.

[28]  D. Kelley,et al.  A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution. , 2004, Molecular phylogenetics and evolution.

[29]  M. Stanhope,et al.  Molecules consolidate the placental mammal tree. , 2004, Trends in ecology & evolution.

[30]  H. Shaffer,et al.  Turtle phylogeny: insights from a novel nuclear intron. , 2004, Molecular phylogenetics and evolution.

[31]  L. Duret,et al.  Recombination drives the evolution of GC-content in the human genome. , 2004, Molecular biology and evolution.

[32]  E. Tibbetts,et al.  Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. , 2003, Molecular phylogenetics and evolution.

[33]  S. Edwards,et al.  Evolutionary Dynamics of Intron Size, Genome Size, and Physiological Correlates in Archosaurs , 2002, The American Naturalist.

[34]  D. Burt,et al.  Origin and evolution of avian microchromosomes , 2002, Cytogenetic and Genome Research.

[35]  E. Olmo,et al.  Different genomic evolutionary rates in the various reptile lineages. , 2002, Gene.

[36]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[37]  T. Gregory,et al.  Coincidence, coevolution, or causation? DNA content, cellsize, and the C‐value enigma , 2001, Biological reviews of the Cambridge Philosophical Society.

[38]  D. Burt,et al.  Differences in gene density on chicken macrochromosomes and microchromosomes. , 2000, Animal genetics.

[39]  G Bernardi,et al.  Isochores and the evolutionary genomics of vertebrates. , 2000, Gene.

[40]  D. Mouchiroud,et al.  Warm-blooded isochore structure in Nile crocodile and turtle. , 1999, Molecular biology and evolution.

[41]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[42]  I. Suetake,et al.  Regulation and function of DNA methylation in vertebrates. , 1998, Journal of biochemistry.

[43]  G Bernardi,et al.  Evolutionary changes in CpG and methylation levels in the genome of vertebrates. , 1997, Gene.

[44]  M. Pagel Inferring evolutionary processes from phylogenies , 1997 .

[45]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[46]  A. Rodionov Micro versus Macro: A Review of Structure and Functions of Avian Micro- and Macrochromosomes , 1996 .

[47]  L. Duret,et al.  Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores , 1995, Journal of Molecular Evolution.

[48]  Leslie Christidis Chromosomal evolution within the family Estrildidae (Aves) III. The Estrildae (waxbill finches) , 1987, Genetica.

[49]  L. Christidis,et al.  Chromosomal evolution within the family Estrildidae (Aves) I. The Poephilae , 1986, Genetica.

[50]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[51]  T. Cavalier-smith,et al.  Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. , 1978, Journal of cell science.

[52]  N. Takagi,et al.  A phylogenetic study of bird karyotypes , 1974, Chromosoma.

[53]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[54]  Carolyn J. Brown,et al.  A comprehensive analysis of common copy-number variations in the human genome. , 2007, American journal of human genetics.

[55]  W. P. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.01 (Build j28) , 2007 .

[56]  J. Wiens,et al.  WHY DOES A TRAIT EVOLVE MULTIPLE TIMES WITHIN A CLADE? REPEATED EVOLUTION OF SNAKELIKE BODY FORM IN SQUAMATE REPTILES , 2006, Evolution; international journal of organic evolution.

[57]  T. Gregory Genome Size Evolution in Animals , 2005 .

[58]  A. Solari,et al.  The ZW Pairs of Two Paleognath Birds From Two Orders Show Transitional Stages of Sex Chromosome Differentiation , 2004, Chromosome Research.

[59]  James A. Cuff,et al.  To order or request additional , 2004 .

[60]  Terrence S. Furey,et al.  The UCSC Genome Browser Database , 2003, Nucleic Acids Res..

[61]  J. Masabanda,et al.  Animal Cytogenetics and Comparative Mapping , 2001 .

[62]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[63]  M. Pagel,et al.  The comparative method in evolutionary biology , 1991 .