A Closed-Form Design of Linear Phase FIR Band-Pass Maximally Flat Digital Differentiators with an Arbitrary Center Frequency

[1]  Bengt Carlsson,et al.  Maximum flat digital differentiator , 1991 .

[2]  J. Le Bihan Coefficients of FIR digital differentiators and Hilbert transformers for midband frequencies , 1996 .

[3]  Ishtiaq Rasool Khan,et al.  New design of full band differentiators based on Taylor series , 1999 .

[4]  O. Vainio,et al.  Delayless differentiation algorithm and its efficient implementation for motion control applications , 1998, IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222).

[5]  Masahiro Okuda,et al.  Finite-Impulse-Response Digital Differentiators for Midband Frequencies Based on Maximal Linearity Constraints , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[6]  B. Kumar,et al.  On the design of FIR digital differentiators which are maximally linear at the frequency π/p, p ∈ {positive integers} , 1992, IEEE Trans. Signal Process..

[7]  L. Rabiner,et al.  FIR digital filter design techniques using weighted Chebyshev approximation , 1975, Proceedings of the IEEE.

[8]  M. Omair Ahmad,et al.  Exact fractional-order differentiators for polynomial signals , 2004, IEEE Signal Processing Letters.

[9]  I. Selesnick Maximally flat low-pass digital differentiator , 2002 .

[10]  Ishtiaq Rasool Khan,et al.  Digital Differentiators Based on Taylor Series , 1999 .

[11]  Gregory W. Medlin,et al.  Bandpass digital differentiator design using quadratic programming , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[12]  C. Burrus,et al.  Exchange algorithms for the design of linear phase FIR filters and differentiators having flat monotonic passbands and equiripple stopbands , 1996 .

[13]  Ronald W. Schafer,et al.  Some considerations in the design of multiband finite-impulse-response digital filters , 1974 .

[14]  Chun-Te Chen,et al.  Design of high-order digital differentiators using L/sub 1/ error criteria , 1995 .

[15]  Sanjit K. Mitra,et al.  Digital Signal Processing: A Computer-Based Approach , 1997 .

[16]  T.W. Fox Bandlimited FIR differentiators with high stopband attenuation and low stopband energy , 2005, PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005..

[17]  S. C. Dutta Roy,et al.  Design of digital differentiators for low frequencies , 1988 .

[18]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[19]  B. T. Krishna,et al.  On design and applications of digital differentiators , 2012, 2012 Fourth International Conference on Advanced Computing (ICoAC).

[20]  L. Rabiner,et al.  On the behavior of minimax relative error fir digital differentiators , 1974 .

[21]  Chien-Cheng Tseng,et al.  Digital differentiator design using fractional delay filter and limit computation , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.